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Born-Oppenheimer Approximation 
The many-par,cle Schrödinger wave equa,on is

42      2 Lattice Vibrations and Thermal Properties 

2.1  The Born–Oppenheimer Approximation (A) 

The most fundamental problem in solid-state physics is to solve the many-particle 
Schrödinger wave equation, 
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w \\ =icH , (2.1) 

where Hc is the crystal Hamiltonian defined by (2.3). In a sense, this equation is 
the “Theory of Everything” for solid-state physics. However, because of the 
many-body problem, solutions can only be obtained after numerous approxima-
tions. As mentioned in Chap. 1, P. W. Anderson has reminded us, “more is differ-
ent!” There are usually emergent properties at higher levels of complexity [2.1]. In 
general, the wave function ȥ is a function of all electronic and nuclear coordinates 
and of the time t. That is, 

 ),,( tli Rr\\  , (2.2) 

where the ri are the electronic coordinates and the Rl are the nuclear coordinates. 
The Hamiltonian Hc of the crystal is 
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In (2.3), m is the electronic mass, Ml is the mass of the nucleus located at Rl, Zl is 
the atomic number of the nucleus at Rl, and e has the magnitude of the electronic 
charge. The sums over i and j run over all electrons.1 The prime on the third term 
on the right-hand side of (2.3) means the terms i = j are omitted. The sums over l 
and lc run over all nuclear coordinates and the prime on the sum over l and lc 
means that the l = lƍ terms are omitted. The various terms all have a physical inter-
pretation. The first term is the operator representing the kinetic energy of the elec-
trons. The second term is the operator representing the kinetic energy of the nu-
clei. The third term is the Coulomb potential energy of interaction between the 
electrons. The fourth term is the Coulomb potential energy of interaction between 
the electrons and the nuclei. The fifth term is the Coulomb potential energy of in-
teraction between the nuclei. 

                                                           
1 Had we chosen the sum to run over only the outer electrons associated with each atom, 

then we would have to replace the last term in (2.3) by an ion–ion interaction term. This 
term could have three and higher body interactions as well as two-body forces. Such a 
procedure would be appropriate [51, p. 3] for the practical discussion of lattice vibra-
tions. However, we shall consider only two-body forces. 
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m is the electronic mass, Ml is the mass of the nucleus located at
Rl, Zl is the atomic number of the nucleus at Rl, and e has the
magnitude of the electronic charge.



Here, TE be the kinetic energy of the electrons, TN be the kinetic
energy of the nuclei, and U be the total Coulomb energy of
interaction of the nuclei and the electrons.

By simplification, we can also write

2.1 The Born–Oppenheimer Approximation (A)      43 

In (2.3) internal magnetic interactions are left out because of their assumed 
smallness. This corresponds to neglecting relativistic effects. In solid-state phys-
ics, it is seldom necessary to assign a structure to the nucleus. It is never necessary 
(or possible) to assign a structure to the electron. Thus in (2.3) both electrons and 
nuclei are treated as point charges. Sometimes it will be necessary to allow for the 
fact that the nucleus can have nonzero spin, but this is only when much smaller 
energy differences are being considered than are of interest now. Because of sta-
tistics, as will be evident later, it is usually necessary to keep in mind that the elec-
tron is a spin 1/2 particle. For the moment, it is necessary to realize only that the 
wave function of (2.2) is a function of the spin degrees of freedom as well as of 
the space degrees of freedom. If we prefer, we can think of ri in the wave function 
as symbolically labeling all the coordinates of the electron. That is, ri gives both 
the position and the spin. However, �i2 is just the ordinary spatial Laplacian. 

For purposes of shortening the notation it is convenient to let TE be the kinetic 
energy of the electrons, TN be the kinetic energy of the nuclei, and U be the total 
Coulomb energy of interaction of the nuclei and the electrons. Then (2.3) becomes 

 NEc TUT �� H . (2.4) 

It is also convenient to define 

 UT � E0H . (2.5) 

Nuclei have large masses and hence in general (cf. the classical equipartition theo-
rem) they have small kinetic energies. Thus in the expression Hc = H0 + TN, it 
makes some sense to regard TN as a perturbation on H0. However, for metals, 
where the electrons have no energy gap between their ground and excited states, it 
is by no means clear that TN should be regarded as a small perturbation on H0. At 
any rate, one can proceed to make expansions just as if a perturbation sequence 
would converge. 

Let M0 be a mean nuclear mass and define 
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=	H0+	TN ,

Nuclei have large masses and hence in general they have small kinetic
energies. Thus in the above expression, it makes some sense to regard
TN as a perturbation on H0. Under the adiabatic approximation, the
total wave function ψn(ri, Rl) can be written as a product of the
electronic wave function φn(ri) (with the nuclei fixed) times the nuclear
wave function X(Rl) (with the electrons in some fixed state). In this
approximation the electrons provide a potential energy for the motion
of the nuclei while the moving nuclei continuously deform the wave
function of the electrons.

ψn(ri,	Rl)	=	φn(ri)X(Rl)	,	 where n labels an electronic state. 



Crystal Dynamics
• Atomic motions are governed by the forces exerted on atoms when

they are displaced from their equilibrium positions.

• At any finite temperature, the lattice structure is not static and there
will be thermal vibrations.

• These lattice vibrations can be described in terms of normal modes
describing the collective vibration of atoms. The quanta of these
normal modes are called phonons.

• To calculate the forces it is necessary to determine the wavefunctions
and energies of the electrons within the crystal. Fortunately many
important properties of the atomic motions can be deduced without
doing these calculations.

• The phonons mainly contribute both to the specific heat and the
thermal conduction of the crystal, and they are also important
because of their interaction with other energy excitations, causing
electrical resistivity and thermal expansion.



When a wave propagates along one of symmetric directions in cubic
crystals, entire planes of atoms move in phase with displacements u either
parallel or perpendicular to the direction of the wavevector. We can
simplify the problem to one dimension. For each wavevector there are
three modes as solutions for u, one of longitudinal polarization and two of
transverse polarization.

90

Figure 3  Planes of atoms as displaced during 
passage of a transverse wave.

Figure 2  (Dashed lines) Planes of atoms
when in equilibrium. (Solid lines) Planes
of atoms when displaced as for a longitudi-
nal wave. The coordinate u measures the
displacement of the planes.

us!4

a

us!3

s ! 4s ! 3s ! 2s ! 1s " 1 s

us!2us!1usus"1 

K

us!2us!1

K

us"2 us"1 us

Name Field

Electron

Photon Electromagnetic wave

Elastic wave

Polarization wave

Electron + elastic deformation

Magnetization wave

Collective electron wave

Phonon

Plasmon

Magnon

Polaron

Exciton

Figure 1  Important elementary excitations in solids.
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Longitudinal Plane Waves Transverse Plane Waves

Three Modes of Plane Waves



The total force on plane s is

The equation of motion of an 
atom in plane s is

Assume the solution contains
time dependent term e-iωt,
then

Longitudinal Plane Waves
For brevity we consider only nearest-neighbor interactions, with p = ± 1. 

where M is the mass of an atom. 
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chapter 4: phonons i. crystal vibrations

VIBRATIONS OF CRYSTALS WITH MONATOMIC BASIS

Consider the elastic vibrations of a crystal with one atom in the primitive
cell. We want to find the frequency of an elastic wave in terms of the wavevec-
tor that describes the wave and in terms of the elastic constants.

The mathematical solution is simplest in the [100], [110], and [111] propa-
gation directions in cubic crystals. These are the directions of the cube edge,
face diagonal, and body diagonal. When a wave propagates along one of these
directions, entire planes of atoms move in phase with displacements either
parallel or perpendicular to the direction of the wavevector. We can describe
with a single coordinate us the displacement of the plane s from its equilibrium
position. The problem is now one dimensional. For each wavevector there are
three modes as solutions for us, one of longitudinal polarization (Fig. 2) and
two of transverse polarization (Fig. 3).

We assume that the elastic response of the crystal is a linear function of
the forces. That is equivalent to the assumption that the elastic energy is a
quadratic function of the relative displacement of any two points in the crystal.
Terms in the energy that are linear in the displacements will vanish in 
equilibrium—see the minimum in Fig. 3.6. Cubic and higher-order terms may
be neglected for sufficiently small elastic deformations.

We assume that the force on the plane s caused by the displacement of the
plane s ! p is proportional to the difference us!p – us of their displacements.
For brevity we consider only nearest-neighbor interactions, with p " #1. The
total force on s from planes s # 1:

(1)

This expression is linear in the displacements and is of the form of Hooke’s law.
The constant C is the force constant between nearest-neighbor planes

and will differ for longitudinal and transverse waves. It is convenient hereafter
to regard C as defined for one atom of the plane, so that Fs is the force on one
atom in the plane s.

The equation of motion of an atom in the plane s is

(2)

where M is the mass of an atom. We look for solutions with all displacements 
having the time dependence exp($i!t). Then d2us/dt2 " $!2us, and (2) becomes

(3)$M!2us " C(us!1 ! us$1 $ 2us) .

M 

d2us

dt2  " C(us!1 ! us$1 $ 2us) ,

Fs " C(us!1 $ us) ! C(us$1 $ us) .
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,				u << a



We then have

or

is a difference equation and has traveling wave

solution of the form:

where a is the spacing between planes and K is the wavevector and a ∥ K.  

9191

chapter 4: phonons i. crystal vibrations

VIBRATIONS OF CRYSTALS WITH MONATOMIC BASIS

Consider the elastic vibrations of a crystal with one atom in the primitive
cell. We want to find the frequency of an elastic wave in terms of the wavevec-
tor that describes the wave and in terms of the elastic constants.

The mathematical solution is simplest in the [100], [110], and [111] propa-
gation directions in cubic crystals. These are the directions of the cube edge,
face diagonal, and body diagonal. When a wave propagates along one of these
directions, entire planes of atoms move in phase with displacements either
parallel or perpendicular to the direction of the wavevector. We can describe
with a single coordinate us the displacement of the plane s from its equilibrium
position. The problem is now one dimensional. For each wavevector there are
three modes as solutions for us, one of longitudinal polarization (Fig. 2) and
two of transverse polarization (Fig. 3).

We assume that the elastic response of the crystal is a linear function of
the forces. That is equivalent to the assumption that the elastic energy is a
quadratic function of the relative displacement of any two points in the crystal.
Terms in the energy that are linear in the displacements will vanish in 
equilibrium—see the minimum in Fig. 3.6. Cubic and higher-order terms may
be neglected for sufficiently small elastic deformations.

We assume that the force on the plane s caused by the displacement of the
plane s ! p is proportional to the difference us!p – us of their displacements.
For brevity we consider only nearest-neighbor interactions, with p " #1. The
total force on s from planes s # 1:

(1)

This expression is linear in the displacements and is of the form of Hooke’s law.
The constant C is the force constant between nearest-neighbor planes

and will differ for longitudinal and transverse waves. It is convenient hereafter
to regard C as defined for one atom of the plane, so that Fs is the force on one
atom in the plane s.

The equation of motion of an atom in the plane s is

(2)

where M is the mass of an atom. We look for solutions with all displacements 
having the time dependence exp($i!t). Then d2us/dt2 " $!2us, and (2) becomes

(3)$M!2us " C(us!1 ! us$1 $ 2us) .

M 

d2us

dt2  " C(us!1 ! us$1 $ 2us) ,

Fs " C(us!1 $ us) ! C(us$1 $ us) .

ch04.qxd  7/21/04  4:52 PM  Page 91

This is a difference equation in the displacements u and has traveling
wave solutions of the form:

(4)

where a is the spacing between planes and K is the wavevector. The value to
use for a will depend on the direction of K.

With (4), we have from (3):

(5)

We cancel u exp(isKa) from both sides, to leave

(6)

With the identity 2 cos Ka ! exp(iKa) " exp(–iKa), we have the dispersion
relation !(K).

(7)

The boundary of the first Brillouin zone lies at K ! #"/a. We show from
(7) that the slope of ! versus K is zero at the zone boundary:

(8)

at K ! #"/a, for here sin Ka ! sin (#") ! 0. The special significance of
phonon wavevectors that lie on the zone boundary is developed in (12) below.

By a trigonometric identity, (7) may be written as

(9)

A plot of ! versus K is given in Fig. 4.

!2
 ! (4C/M) sin2

  

1
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This is a difference equation in the displacements u and has traveling
wave solutions of the form:
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(7) that the slope of ! versus K is zero at the zone boundary:

(8)

at K ! #"/a, for here sin Ka ! sin (#") ! 0. The special significance of
phonon wavevectors that lie on the zone boundary is developed in (12) below.

By a trigonometric identity, (7) may be written as

(9)

A plot of ! versus K is given in Fig. 4.

!2
 ! (4C/M) sin2

  

1
2 Ka ;   ! ! (4C/M)1/2 !sin  

1
2 Ka ! .

d!2/dK ! (2Ca/M) sin Ka ! 0

!2
 ! (2C/M)(1 $ cos Ka) .

!2M ! $C[exp(iKa) " exp($iKa) $ 2] .

$!2Mu exp(isKa) ! Cu{exp[i(s " 1)Ka] " exp[i(s $ 1)Ka] $ 2 exp(isKa)} .

us!1 ! u exp(isKa) exp(! iKa) ,

92

0
0

K

0.2

0.4

0.6

0.8

1.0

1.2

(4C/M)1/2
!

(4C/M)1/2
!

a
"

2
1

a
"

a
2"$

= sin Ka

First Brillouin zone

Figure 4  Plot of ! versus K. The region of K % 1/a or # & a corresponds to the contin-
uum approximation; here ! is directly proportional to K.

ch04.qxd  7/21/04  4:52 PM  Page 92

This is a difference equation in the displacements u and has traveling
wave solutions of the form:

(4)

where a is the spacing between planes and K is the wavevector. The value to
use for a will depend on the direction of K.

With (4), we have from (3):

(5)

We cancel u exp(isKa) from both sides, to leave

(6)

With the identity 2 cos Ka ! exp(iKa) " exp(–iKa), we have the dispersion
relation !(K).

(7)

The boundary of the first Brillouin zone lies at K ! #"/a. We show from
(7) that the slope of ! versus K is zero at the zone boundary:

(8)

at K ! #"/a, for here sin Ka ! sin (#") ! 0. The special significance of
phonon wavevectors that lie on the zone boundary is developed in (12) below.

By a trigonometric identity, (7) may be written as

(9)

A plot of ! versus K is given in Fig. 4.

!2
 ! (4C/M) sin2

  

1
2 Ka ;   ! ! (4C/M)1/2 !sin  

1
2 Ka ! .

d!2/dK ! (2Ca/M) sin Ka ! 0

!2
 ! (2C/M)(1 $ cos Ka) .

!2M ! $C[exp(iKa) " exp($iKa) $ 2] .

$!2Mu exp(isKa) ! Cu{exp[i(s " 1)Ka] " exp[i(s $ 1)Ka] $ 2 exp(isKa)} .

us!1 ! u exp(isKa) exp(! iKa) ,

92

0
0

K

0.2

0.4

0.6

0.8

1.0

1.2

(4C/M)1/2
!

(4C/M)1/2
!

a
"

2
1

a
"

a
2"$

= sin Ka

First Brillouin zone

Figure 4  Plot of ! versus K. The region of K % 1/a or # & a corresponds to the contin-
uum approximation; here ! is directly proportional to K.

ch04.qxd  7/21/04  4:52 PM  Page 92This is a difference equation in the displacements u and has traveling
wave solutions of the form:

(4)

where a is the spacing between planes and K is the wavevector. The value to
use for a will depend on the direction of K.

With (4), we have from (3):

(5)

We cancel u exp(isKa) from both sides, to leave

(6)

With the identity 2 cos Ka ! exp(iKa) " exp(–iKa), we have the dispersion
relation !(K).

(7)

The boundary of the first Brillouin zone lies at K ! #"/a. We show from
(7) that the slope of ! versus K is zero at the zone boundary:

(8)

at K ! #"/a, for here sin Ka ! sin (#") ! 0. The special significance of
phonon wavevectors that lie on the zone boundary is developed in (12) below.

By a trigonometric identity, (7) may be written as

(9)

A plot of ! versus K is given in Fig. 4.

!2
 ! (4C/M) sin2

  

1
2 Ka ;   ! ! (4C/M)1/2 !sin  

1
2 Ka ! .

d!2/dK ! (2Ca/M) sin Ka ! 0

!2
 ! (2C/M)(1 $ cos Ka) .

!2M ! $C[exp(iKa) " exp($iKa) $ 2] .

$!2Mu exp(isKa) ! Cu{exp[i(s " 1)Ka] " exp[i(s $ 1)Ka] $ 2 exp(isKa)} .

us!1 ! u exp(isKa) exp(! iKa) ,

92

0
0

K

0.2

0.4

0.6

0.8

1.0

1.2

(4C/M)1/2
!

(4C/M)1/2
!

a
"

2
1

a
"

a
2"$

= sin Ka

First Brillouin zone

Figure 4  Plot of ! versus K. The region of K % 1/a or # & a corresponds to the contin-
uum approximation; here ! is directly proportional to K.

ch04.qxd  7/21/04  4:52 PM  Page 92

This is a difference equation in the displacements u and has traveling
wave solutions of the form:

(4)

where a is the spacing between planes and K is the wavevector. The value to
use for a will depend on the direction of K.

With (4), we have from (3):

(5)

We cancel u exp(isKa) from both sides, to leave

(6)

With the identity 2 cos Ka ! exp(iKa) " exp(–iKa), we have the dispersion
relation !(K).

(7)

The boundary of the first Brillouin zone lies at K ! #"/a. We show from
(7) that the slope of ! versus K is zero at the zone boundary:

(8)

at K ! #"/a, for here sin Ka ! sin (#") ! 0. The special significance of
phonon wavevectors that lie on the zone boundary is developed in (12) below.

By a trigonometric identity, (7) may be written as

(9)

A plot of ! versus K is given in Fig. 4.

!2
 ! (4C/M) sin2

  

1
2 Ka ;   ! ! (4C/M)1/2 !sin  

1
2 Ka ! .

d!2/dK ! (2Ca/M) sin Ka ! 0

!2
 ! (2C/M)(1 $ cos Ka) .

!2M ! $C[exp(iKa) " exp($iKa) $ 2] .

$!2Mu exp(isKa) ! Cu{exp[i(s " 1)Ka] " exp[i(s $ 1)Ka] $ 2 exp(isKa)} .

us!1 ! u exp(isKa) exp(! iKa) ,

92

0
0

K

0.2

0.4

0.6

0.8

1.0

1.2

(4C/M)1/2
!

(4C/M)1/2
!

a
"

2
1

a
"

a
2"$

= sin Ka

First Brillouin zone

Figure 4  Plot of ! versus K. The region of K % 1/a or # & a corresponds to the contin-
uum approximation; here ! is directly proportional to K.

ch04.qxd  7/21/04  4:52 PM  Page 92

LA and the two TA branches have a total of 3N modes, thereby accounting for 3N
of the total degrees of freedom. The remaining (3p – 3)N degrees of freedom are
accommodated by the optical branches.

We consider a cubic crystal where atoms of mass M1 lie on one set of planes
and atoms of mass M2 lie on planes interleaved between those of the first set
(Fig. 9). It is not essential that the masses be different, but either the force con-
stants or the masses will be different if the two atoms of the basis are in non-
equivalent sites. Let a denote the repeat distance of the lattice in the direction
normal to the lattice planes considered. We treat waves that propagate in a
symmetry direction such that a single plane contains only a single type of ion;
such directions are [111] in the NaCl structure and [100] in the CsCl structure.

We write the equations of motion under the assumption that each plane
interacts only with its nearest-neighbor planes and that the force constants are
identical between all pairs of nearest-neighbor planes. We refer to Fig. 9 to
obtain

(18)

We look for a solution in the form of a traveling wave, now with different
amplitudes u, v on alternate planes:

(19)

We define a in Fig. 9 as the distance between nearest identical planes, not
nearest-neighbor planes.

On substitution of (19) in (18) we have

(20)
  !!2M2v " Cu[exp(iKa) # 1] ! 2Cv .
  !!2M1u " Cv[1 # exp(!iKa)] ! 2Cu ;

us " u exp(isKa) exp(!i!t) ;   v2 " v exp(isKa) exp(!i!t) .

 M2 

d2vs

dt2  " C(us#1 # us 

 ! 2vs) .

 M1 

d2us

dt2  " C(vs # vs!1 ! 2us) ;

4  Phonons I. Crystal Vibrations 97

us!1 usvs!1 vs vs#1

M2M1

us#1 

a

K

Figure 9 A diatomic crystal structure with masses M1, M2 connected by force constant C be-
tween adjacent planes. The displacements of atoms Ml are denoted by us!1, us, us#1, . . . , and of
atoms M2 by vs!1, vs, vs#1. The repeat distance is a in the direction of the wavevector K. The atoms
are shown in their undisplaced positions.
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First Brillouin Zone
The ra,o of the displacements of two successive planes is given by

The fist Brillouin zone of a linear lattice is defined by , and all
the displacement can be described by a wavevector within the first zone.

At the zone boundaries, K = ± 𝜋/a , whence

The range −𝜋 to +𝜋 for the phase Ka covers all independent values of the
exponential.

This is a standing wave: alternate atoms oscillate in opposite phases,
because us = ± 1 according to whether s is an even or an odd integer. The
wave moves neither to the right nor to the left.

First Brillouin Zone

What range of K is physically significant for elastic waves? Only those in
the first Brillouin zone. From (4) the ratio of the displacements of two succes-
sive planes is given by

(10)

The range !! to "! for the phase Ka covers all independent values of the
exponential.

The range of independent values of K is specified by

This range is the first Brillouin zone of the linear lattice, as defined in 
Chapter 2. The extreme values are Kmax # $!/a. Values of K outside of the
first Brillouin zone (Fig. 5) merely reproduce lattice motions described by 
values within the limits $!/a.

We may treat a value of K outside these limits by subtracting the integral
multiple of 2!/a that will give a wavevector inside these limits. Suppose K lies out-
side the first zone, but a related wavevector K% defined lies within
the first zone, where n is an integer. Then the displacement ratio (10) becomes

(11)

because exp(i2!n) # 1. Thus the displacement can always be described by a
wavevector within the first zone. We note that 2!n/a is a reciprocal lattice vec-
tor because 2!/a is a reciprocal lattice vector. Thus by subtraction of an appro-
priate reciprocal lattice vector from K, we always obtain an equivalent
wavevector in the first zone.

At the boundaries Kmax # $!/a of the Brillouin zone the solution us #
u exp(isKa) does not represent a traveling wave, but a standing wave. At the
zone boundaries sKmaxa # $s!, whence

(12)us # u exp(! is!) # u (!1)s .

us"1/us # exp(iKa) " exp(i2!n) exp[i(Ka ! 2!n)] " exp(iK#a) ,

K# # K ! 2!n/a

!! $ Ka & ! ,   or   !!
a  $ K & 

!
a  .

us"1
us

 # 

u exp[i(s " 1)Ka]
u exp(isKa)

 # exp(iKa)  .
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a

Figure 5  The wave represented by the solid curve conveys no information not given by the
dashed curve. Only wavelengths longer than 2a are needed to represent the motion.
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For the linear lattice, we thus have

Near zone center where Ka << 1,

At zone boundaries where Ka = ±𝜋,
vg = 0

vg = const.

Group Velocity
The transmission velocity of a wave packet is the group velocity, given as 

the gradient of the frequency with respect to K. 

This is a standing wave: alternate atoms oscillate in opposite phases, because 
us ! "1 according to whether s is an even or an odd integer. The wave moves
neither to the right nor to the left.

This situation is equivalent to Bragg reflection of x-rays: when the Bragg
condition is satisfied a traveling wave cannot propagate in a lattice, but
through successive reflections back and forth, a standing wave is set up.

The critical value Kmax ! "!/a found here satisfies the Bragg condition 
2d sin " ! n#: we have so that # ! 2a. With
x-rays it is possible to have n equal to other integers besides unity because the
amplitude of the electromagnetic wave has a meaning in the space between
atoms, but the displacement amplitude of an elastic wave usually has a mean-
ing only at the atoms themselves.

Group Velocity

The transmission velocity of a wave packet is the group velocity, given as

or

(13)

the gradient of the frequency with respect to K. This is the velocity of energy
propagation in the medium.

With the particular dispersion relation (9), the group velocity (Fig. 6) is

(14)

This is zero at the edge of the zone where K ! !/a. Here the wave is a standing
wave, as in (12), and we expect zero net transmission velocity for a standing wave.

Long Wavelength Limit

When Ka # 1 we expand so that the dispersion rela-
tion (7) becomes

(15)

The result that the frequency is directly proportional to the wavevector in the
long wavelength limit is equivalent to the statement that the velocity of sound
is independent of frequency in this limit. Thus v ! $/K, exactly as in the con-
tinuum theory of elastic waves—in the continuum limit Ka # 1.

Derivation of Force Constants from Experiment

In metals the effective forces may be of quite long range and are carried
from ion to ion through the conduction electron sea. Interactions have been
found between planes of atoms separated by as many as 20 planes. We can make
a statement about the range of the forces from the observed experimental

$2
 ! (C/M)K2a2 .

cos Ka ! 1 $ 

1
2(Ka)2,

vg ! (Ca2/M)1/2 cos  

1
2 Ka .

vg ! gradK $(K) ,

vg ! d$/dK ,

" ! 

1
2!, d ! a, K ! 2!/#, n ! 1,
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dispersion relation for !. The generalization of the dispersion relation (7) to p
nearest planes is easily found to be

(16a)

We solve for the interplanar force constants Cp by multiplying both sides
by cos rKa, where r is an integer, and integrating over the range of indepen-
dent values of K:

(16b)

The integral vanishes except for p ! r. Thus

(17)

gives the force constant at range pa, for a structure with a monatomic basis.

TWO ATOMS PER PRIMITIVE BASIS

The phonon dispersion relation shows new features in crystals with two or
more atoms per primitive basis. Consider, for example, the NaCl or diamond
structures, with two atoms in the primitive cell. For each polarization mode in
a given propagation direction the dispersion relation ! versus K develops two
branches, known as the acoustical and optical branches, as in Fig. 7. We have
longitudinal LA and transverse acoustical TA modes, and longitudinal LO and
transverse optical TO modes.

If there are p atoms in the primitive cell, there are 3p branches to the dis-
persion relation: 3 acoustical branches and 3p – 3 optical branches. Thus ger-
manium (Fig. 8a) and KBr (Fig. 8b), each with two atoms in a primitive cell,
have six branches: one LA, one LO, two TA, and two TO.

Cp ! " 

Ma
2"
!"/a

""/a
dK !2

K cos pKa

  ! "2"Cr

  

/a .

 M!"/a

""/a
dK !2

K cos rKa ! 2"
p!0

Cp!"/a

""/a
 dK (1 " cos pKa) cos rKa

!2
 ! (2/M) "

p!0
 

Cp(1 " cos pKa) .
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" Figure 6  Group velocity vg versus K, for model of
Fig. 4. At the zone boundary K ! "/a the group
velocity is zero.

ch04.qxd  7/21/04  4:52 PM  Page 95



Force Beyond Nearest Neighbors
The dispersion relation generalized to include p nearest planes is

To obtain Cp, multiplying both sides by cos(rKa) and integrating over K

The integral vanishes except for p = r. Thus 

gives the force constant at range pa, for a structure with a monatomic
basis.
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longitudinal LA and transverse acoustical TA modes, and longitudinal LO and
transverse optical TO modes.

If there are p atoms in the primitive cell, there are 3p branches to the dis-
persion relation: 3 acoustical branches and 3p – 3 optical branches. Thus ger-
manium (Fig. 8a) and KBr (Fig. 8b), each with two atoms in a primitive cell,
have six branches: one LA, one LO, two TA, and two TO.
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dispersion relation for !. The generalization of the dispersion relation (7) to p
nearest planes is easily found to be

(16a)

We solve for the interplanar force constants Cp by multiplying both sides
by cos rKa, where r is an integer, and integrating over the range of indepen-
dent values of K:

(16b)

The integral vanishes except for p ! r. Thus

(17)

gives the force constant at range pa, for a structure with a monatomic basis.
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Vibrations of Diatomic Crystal

Considering forces from the nearest planes only, the equations of
motion are

LA and the two TA branches have a total of 3N modes, thereby accounting for 3N
of the total degrees of freedom. The remaining (3p – 3)N degrees of freedom are
accommodated by the optical branches.

We consider a cubic crystal where atoms of mass M1 lie on one set of planes
and atoms of mass M2 lie on planes interleaved between those of the first set
(Fig. 9). It is not essential that the masses be different, but either the force con-
stants or the masses will be different if the two atoms of the basis are in non-
equivalent sites. Let a denote the repeat distance of the lattice in the direction
normal to the lattice planes considered. We treat waves that propagate in a
symmetry direction such that a single plane contains only a single type of ion;
such directions are [111] in the NaCl structure and [100] in the CsCl structure.

We write the equations of motion under the assumption that each plane
interacts only with its nearest-neighbor planes and that the force constants are
identical between all pairs of nearest-neighbor planes. We refer to Fig. 9 to
obtain

(18)

We look for a solution in the form of a traveling wave, now with different
amplitudes u, v on alternate planes:

(19)

We define a in Fig. 9 as the distance between nearest identical planes, not
nearest-neighbor planes.

On substitution of (19) in (18) we have

(20)
  !!2M2v " Cu[exp(iKa) # 1] ! 2Cv .
  !!2M1u " Cv[1 # exp(!iKa)] ! 2Cu ;

us " u exp(isKa) exp(!i!t) ;   v2 " v exp(isKa) exp(!i!t) .

 M2 

d2vs

dt2  " C(us#1 # us 

 ! 2vs) .

 M1 

d2us

dt2  " C(vs # vs!1 ! 2us) ;
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Figure 9 A diatomic crystal structure with masses M1, M2 connected by force constant C be-
tween adjacent planes. The displacements of atoms Ml are denoted by us!1, us, us#1, . . . , and of
atoms M2 by vs!1, vs, vs#1. The repeat distance is a in the direction of the wavevector K. The atoms
are shown in their undisplaced positions.
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We look for a solution in the form of a traveling wave such as

Here a is the distance between nearest identical planes, not nearest
neighbor planes. We then have

or

Near zone center where Ka << 1,

At zone boundaries where Ka = ±𝜋,

(optical branch) 

(acoustical branch) 
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symmetry direction such that a single plane contains only a single type of ion;
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We define a in Fig. 9 as the distance between nearest identical planes, not
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The homogeneous linear equations have a solution only if the determinant of
the coefficients of the unknowns u, v vanishes:

(21)

or

(22)

We can solve this equation exactly for !2, but it is simpler to examine the
limiting cases Ka ! 1 and Ka " #" at the zone boundary. For small Ka we
have and the two roots are

(23)

(24)

The extent of the first Brillouin zone is $"/a % K % "/a, where a is the repeat
distance of the lattice. At Kmax " #"/a the roots are

(25)

The dependence of ! on K is shown in Fig. 7 for M1 & M2.
The particle displacements in the transverse acoustical (TA) and trans-

verse optical (TO) branches are shown in Fig. 10. For the optical branch at 
K " 0 we find, on substitution of (23) in (20),

(26)

The atoms vibrate against each other, but their center of mass is fixed. If the
two atoms carry opposite charges, as in Fig. 10, we may excite a motion of this
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The numerology of the branches follows from the number of degrees of free-
dom of the atoms. With p atoms in the primitive cell and N primitive cells, there
are pN atoms. Each atom has three degrees of freedom, one for each of the x, y, z
directions, making a total of 3pN degrees of freedom for the crystal. The number
of allowed K values in a single branch is just N for one Brillouin zone.1 Thus the

96

a

M1 ! M2

K

(2C/M1)1/2

(2C/M2)1/2

Optical phonon branch

Acoustical
phonon branch

2C "

!

M1

1
M2

1 1/2( )[ ]

Figure 7  Optical and acoustical branches of the dis-
persion relation for a diatomic linear lattice, showing
the limiting frequencies at K # 0 and K # Kmax # !/a.
The lattice constant is a.

1We show in Chapter 5 by application of periodic boundary conditions to the modes of the 
crystal of volume V that there is one K value in the volume (2!)3/V in Fourier space. The volume of a
Brillouin zone is (2!)3/Vc, where Vc is the volume of a crystal primitive cell. Thus the number of
allowed K values in a Brillouin zone is V/Vc, which is just N, the number of primitive cells in the crystal.
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The LO and TO branches coincide at 
K # 0; this also is a consequence of the crystal symmetry 
of Ge. The results were obtained with neutron inelastic
scattering by G. Nilsson and G. Nelin.
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Figure 8b  Dispersion curves in the [111]
direction in KBr at 90 K, after A. D. B.
Woods, B. N. Brockhouse, R. A. Cowley,
and W. Cochran. The extrapolation to K # 0
of the TO, LO branches are called "T, "L.
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LA and the two TA branches have a total of 3N modes, thereby accounting for 3N
of the total degrees of freedom. The remaining (3p – 3)N degrees of freedom are
accommodated by the optical branches.

We consider a cubic crystal where atoms of mass M1 lie on one set of planes
and atoms of mass M2 lie on planes interleaved between those of the first set
(Fig. 9). It is not essential that the masses be different, but either the force con-
stants or the masses will be different if the two atoms of the basis are in non-
equivalent sites. Let a denote the repeat distance of the lattice in the direction
normal to the lattice planes considered. We treat waves that propagate in a
symmetry direction such that a single plane contains only a single type of ion;
such directions are [111] in the NaCl structure and [100] in the CsCl structure.

We write the equations of motion under the assumption that each plane
interacts only with its nearest-neighbor planes and that the force constants are
identical between all pairs of nearest-neighbor planes. We refer to Fig. 9 to
obtain

(18)

We look for a solution in the form of a traveling wave, now with different
amplitudes u, v on alternate planes:

(19)

We define a in Fig. 9 as the distance between nearest identical planes, not
nearest-neighbor planes.

On substitution of (19) in (18) we have

(20)
  !!2M2v " Cu[exp(iKa) # 1] ! 2Cv .
  !!2M1u " Cv[1 # exp(!iKa)] ! 2Cu ;

us " u exp(isKa) exp(!i!t) ;   v2 " v exp(isKa) exp(!i!t) .

 M2 

d2vs

dt2  " C(us#1 # us 

 ! 2vs) .

 M1 

d2us

dt2  " C(vs # vs!1 ! 2us) ;
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Figure 9 A diatomic crystal structure with masses M1, M2 connected by force constant C be-
tween adjacent planes. The displacements of atoms Ml are denoted by us!1, us, us#1, . . . , and of
atoms M2 by vs!1, vs, vs#1. The repeat distance is a in the direction of the wavevector K. The atoms
are shown in their undisplaced positions.
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Illustration of Optical and Acoustic Modes

M1 and M2 vibrate out of
phase which can be excited by
the electromagnetic waves.

u ≃ v at K ~ 0 ,

• With p atoms in the primitive cell and N primitive cells, there are a total
of 3pN degrees of freedom for the crystal. Acoustical modes (TA and LA)
will contribute 3N of the total degrees of freedom. The remaining (3p
−3)N are accommodated by the optical branches.

• Wavelike solutions do not exist for certain frequencies, which is
characteristic of elastic waves in polyatomic lattices.

whence the term acous,c branch.

The atoms vibrate against each other, but their center of mass is fixed. 

The homogeneous linear equations have a solution only if the determinant of
the coefficients of the unknowns u, v vanishes:

(21)

or

(22)

We can solve this equation exactly for !2, but it is simpler to examine the
limiting cases Ka ! 1 and Ka " #" at the zone boundary. For small Ka we
have and the two roots are

(23)

(24)

The extent of the first Brillouin zone is $"/a % K % "/a, where a is the repeat
distance of the lattice. At Kmax " #"/a the roots are

(25)

The dependence of ! on K is shown in Fig. 7 for M1 & M2.
The particle displacements in the transverse acoustical (TA) and trans-

verse optical (TO) branches are shown in Fig. 10. For the optical branch at 
K " 0 we find, on substitution of (23) in (20),

(26)
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The homogeneous linear equations have a solution only if the determinant of
the coefficients of the unknowns u, v vanishes:

(21)

or

(22)

We can solve this equation exactly for !2, but it is simpler to examine the
limiting cases Ka ! 1 and Ka " #" at the zone boundary. For small Ka we
have and the two roots are

(23)

(24)

The extent of the first Brillouin zone is $"/a % K % "/a, where a is the repeat
distance of the lattice. At Kmax " #"/a the roots are

(25)

The dependence of ! on K is shown in Fig. 7 for M1 & M2.
The particle displacements in the transverse acoustical (TA) and trans-

verse optical (TO) branches are shown in Fig. 10. For the optical branch at 
K " 0 we find, on substitution of (23) in (20),

(26)

The atoms vibrate against each other, but their center of mass is fixed. If the
two atoms carry opposite charges, as in Fig. 10, we may excite a motion of this
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Transverse optical mode for 
diatomic chain 

Amplitude of vibration is strongly exaggerated! 

The optical branch is a higher energy vibration. The term “optical”
comes from how these were discovered - notice that if atom 1 is
positively charged and atom 2 is negative, that the charges are moving
in opposite directions. You can excite these modes with the oscillating
electric fields of EM radiations.



Transverse acoustical mode for 
diatomic chain 

The acoustic branch has this name because it gives rise to long
wavelength vibrations - speed of sound.



Phonons
• The regular la_ce of atoms are ,ed together with bonds, so they can't

vibrate independently. The vibra,ons take the form of collec,ve modes
which propagate through the material.

• There should be energy associated with the vibra,ons of these atoms,
which is quan,zed, the quantum of the vibra,on energy is a “phonon”.
A phonon is an excited state in the quantum mechanical quan,za,on of
the modes of vibra,ons for elas,c structures of interac,ng par,cles.

• The vibra,onal energies of molecules are quan,zed and treated as
quantum harmonic oscillators with

when the mode is excited to quantum number n.

• Such propaga,ng la_ce vibra,ons can be considered to be sound
waves, and their propaga,on speed is the speed of sound in the
material.

type with the electric field of a light wave, so that the branch is called the opti-
cal branch. At a general K the ratio u/v will be complex, as follows from either
of the equations (20). Another solution for the amplitude ratio at small K is 
u ! v, obtained as the K ! 0 limit of (24). The atoms (and their center of
mass) move together, as in long wavelength acoustical vibrations, whence the
term acoustical branch.

Wavelike solutions do not exist for certain frequencies, here between
(2C/M1)1/2 and (2C/M2)1/2. This is a characteristic feature of elastic waves in
polyatomic lattices. There is a frequency gap at the boundary Kmax ! "!/a of
the first Brillouin zone.

QUANTIZATON OF ELASTIC WAVES

The energy of a lattice vibration is quantized. The quantum of energy is
called a phonon in analogy with the photon of the electromagnetic wave. The
energy of an elastic mode of angular frequency " is

(27)

when the mode is excited to quantum number n; that is, when the mode is occu-
pied by n phonons. The term is the zero point energy of the mode. It occurs
for both phonons and photons as a consequence of their equivalence to a quan-
tum harmonic oscillator of frequency ", for which the energy eigenvalues are
also The quantum theory of phonons is developed in Appendix C.

We can quantize the mean square phonon amplitude. Consider the stand-
ing wave mode of amplitude

Here u is the displacement of a volume element from its equilibrium position
at x in the crystal. The energy in the mode, as in any harmonic oscillator, is half
kinetic energy and half potential energy, when averaged over time. The kinetic
energy density is , where # is the mass density. In a crystal of volume
V, the volume integral of the kinetic energy is The time aver-
age kinetic energy is

(28)

because #sin2 "t$! . The square of the amplitude of the mode is

(29)

This relates the displacement in a given mode to the phonon occupancy n of
the mode.

What is the sign of "? The equations of motion such as (2) are equations
for "2, and if this is positive then " can have either sign, % or &. But the 
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Measurement of  Phonon Dispersion

KBr

A phonon of wavevector K will interact with particles such as photons,
neutrons, and electrons as if it had a momentum ℏK. However, a phonon
does not carry physical momentum.
Phonon dispersion relations ω(K) are most often determined experimen-
tally by the inelastic scattering of neutrons with the emission or absorption
of a phonon. If a phonon of K is emitted (+) or absorbed (−) in the
scattering of a neutron k by the crystal, then

and

The kinetic energy of the incident neutron is p2/2Mn, where Mn is the mass
of the neutron. The momentum p is given by !k, where k is the wavevector of
the neutron. Thus !2k2/2Mn is the kinetic energy of the incident neutron. If k!
is the wavevector of the scattered neutron, the energy of the scattered neutron
is !2k!2/2Mn. The statement of conservation of energy is

(34)

where !! is the energy of the phonon created (") or absorbed (#) in the
process.

To determine the dispersion relation using (33) and (34) it is necessary in
the experiment to find the energy gain or loss of the scattered neutrons as a
function of the scattering direction k – k!. Results for germanium and KBr are
given in Fig. 8; results for sodium are given in Fig. 11. A spectrometer used for
phonon studies is shown in Fig. 12.

SUMMARY

• The quantum unit of a crystal vibration is a phonon. If the angular fre-
quency is !, the energy of the phonon is !!.

• When a phonon of wavevector K is created by the inelastic scattering of a
photon or neutron from wavevector k to k!, the wavevector selection rule that
governs the process is

where G is a reciprocal lattice vector.

• All elastic waves can be described by wavevectors that lie within the first
Brillouin zone in reciprocal space.

• If there are p atoms in the primitive cell, the phonon dispersion relation will
have 3 acoustical phonon branches and 3p # 3 optical phonon branches.

Problems

1. Monatomic linear lattice. Consider a longitudinal wave

which propagates in a monatomic linear lattice of atoms of mass M, spacing a, and
nearest-neighbor interaction C.
(a) Show that the total energy of the wave is

where s runs over all atoms.

E $ 

1
2 M !

s
 

(dus /dt)2
 " 

1
2 C !

s
 

(us # us"1)2 .

us $ u cos(!t # sKa)

k $ k" " K " G ,

!2k2

2Mn
 $ 

!2k"2

2Mn
 # !! ,
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of the atoms. The kinematics of the scattering of a neutron beam by a crystal
lattice are described by the general wavevector selection rule:

(33)

and by the requirement of conservation of energy. Here K is the wavevector of
the phonon created (!) or absorbed (") in the scattering process, and G is
any reciprocal lattice vector. For a phonon we choose G such that K lies in the
first Brillouin zone.

k ! G # k! " K ,
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Figure 11  The dispersion curves of sodium for phonons propagating in the [001], [110], and
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The numerology of the branches follows from the number of degrees of free-
dom of the atoms. With p atoms in the primitive cell and N primitive cells, there
are pN atoms. Each atom has three degrees of freedom, one for each of the x, y, z
directions, making a total of 3pN degrees of freedom for the crystal. The number
of allowed K values in a single branch is just N for one Brillouin zone.1 Thus the

96

a

M1 ! M2

K

(2C/M1)1/2

(2C/M2)1/2

Optical phonon branch

Acoustical
phonon branch

2C "

!

M1

1
M2

1 1/2( )[ ]

Figure 7  Optical and acoustical branches of the dis-
persion relation for a diatomic linear lattice, showing
the limiting frequencies at K # 0 and K # Kmax # !/a.
The lattice constant is a.

1We show in Chapter 5 by application of periodic boundary conditions to the modes of the 
crystal of volume V that there is one K value in the volume (2!)3/V in Fourier space. The volume of a
Brillouin zone is (2!)3/Vc, where Vc is the volume of a crystal primitive cell. Thus the number of
allowed K values in a Brillouin zone is V/Vc, which is just N, the number of primitive cells in the crystal.
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Figure 8a  Phonon dispersion relations in the [111] 
direction in germanium at 80 K. The two TA phonon
branches are horizontal at the zone boundary position,

The LO and TO branches coincide at 
K # 0; this also is a consequence of the crystal symmetry 
of Ge. The results were obtained with neutron inelastic
scattering by G. Nilsson and G. Nelin.
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Figure 8b  Dispersion curves in the [111]
direction in KBr at 90 K, after A. D. B.
Woods, B. N. Brockhouse, R. A. Cowley,
and W. Cochran. The extrapolation to K # 0
of the TO, LO branches are called "T, "L.

ch04.qxd  7/21/04  4:52 PM  Page 96



s
phonon

hE n
l

=

PHONONS

• Quanta of lattice vibrations

• Energies of phonons are
quantized

~a0=10-10m

phonon
hp
l

=

PHOTONS
• Quanta of electromagne,c 

radia,on
• Energies of photons are quan,zed 

as well

photon
hcE
l

=

visible	
~5x10-7m

photon
hp
l

=

~	2.5	eV~	26	meV



Phonon Heat Capacity
Energy given to lattice vibrations (or phonons) is the dominant contribution
to the heat capacity in most solids. In non-magnetic insulators, it is the only
contribution. Calculation of the lattice energy and heat capacity of a solid
therefore falls into two parts: i) the evaluation of the contribution of a
single mode, and ii) the summation over the frequency distribution of the
modes. The heat capacity at constant volume is defined as

The total energy of the phonons at temperature T in a crystal can be
written as the sum of the energies over all phonon modes, here indexed by
the wavevector K and polarization index p.

where <nK,p> is the thermal equilibrium occupancy of phonons of
wavevector K and polarization p.

CV = (∂U/∂T)V , where U is the energy and T the temperature.

107107

chapter 5: phonons ii. thermal properties

We discuss the heat capacity of a phonon gas and then the effects of 
anharmonic lattice interactions on the phonons and on the crystal.

PHONON HEAT CAPACITY

By heat capacity we shall usually mean the heat capacity at constant vol-
ume, which is more fundamental than the heat capacity at constant pressure,
which is what the experiments determine.1 The heat capacity at constant vol-
ume is defined as where U is the energy and T the temperature.

The contribution of the phonons to the heat capacity of a crystal is called 
the lattice heat capacity and is denoted by Clat. The total energy of the
phonons at a temperature in a crystal may be written as the sum of
the energies over all phonon modes, here indexed by the wavevector K and 
polarization index p:

(1)

where is the thermal equilibrium occupancy of phonons of wavevector 
K and polarization p. The form of is given by the Planck distribution 
function:

(2)

where the denotes the average in thermal equilibrium. A graph of is
given in Fig. 1.

Planck Distribution

Consider a set of identical harmonic oscillators in thermal equilibrium.
The ratio of the number of oscillators in their th quantum state of exci-
tation to the number in the nth quantum state is

(3)Nn!1/Nn " exp(#!!$") ,   " " kBT ,

(n ! 1)

!n"!Á"

!n" " 

1
exp(!!/") # 1

 ,

!nK,p"
!nK,p"

Ulat " #
K

 #
p

 UK,p " #
K

 #
p

 

!nK,p"!!K,p ,

"(" kBT)

CV " (%U/%T)V

1A thermodynamic relation gives , where is the temperature coefficient 
of linear expansion, V the volume, and B the bulk modulus. The fractional difference between 
and is usually small in solids and often may be neglected. As we see that , pro-
vided and B are constant.#

Cp l CVT l 0CV

Cp

#Cp # CV " 9#2BVT
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Planck Distribution
Boltzmann distribution (also called Gibbs distribution) is a probability
measure Pi that gives the probability that a system will be in a
certain state as a function of that state's energy ϵi and the temperature T
of the system.

The ratio of probabilities of two states is known as the Boltzmann
factor and characteristically only depends on the states' energy
difference:

Consider a set of identical harmonic oscillators in thermal equilibrium.
The ratio of the number of oscillators in their (n + 1)th quantum state of
excitation to the number in the nth quantum state is

107107
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Since

𝜏 = kBT,

With                                , we have the Planck distribu,on func,on:

The fraction of the total number of oscillators in the nth quantum state is

Pn =

by use of the Boltzmann factor. Thus the fraction of the total number of oscil-
lators in the nth quantum state is

(4)

We see that the average excitation quantum number of an oscillator is

(5)

The summations in (5) are

(6)

with . Thus we may rewrite (5) as the Planck distribution:

(7)

Normal Mode Enumeration

The energy of a collection of oscillators of frequencies !K,p in thermal
equilibrium is found from (1) and (2):

(8)

It is usually convenient to replace the summation over K by an integral. Sup-
pose that the crystal has modes of a given polarization p in the fre-
quency range to . Then the energy is

(9)

The lattice heat capacity is found by differentiation with respect to tempera-
ture. Let : then gives

(10)

The central problem is to find , the number of modes per unit fre-
quency range. This function is called the density of modes or, more often, den-
sity of states.

Density of States in One Dimension

Consider the boundary value problem for vibrations of a one-dimensional
line (Fig. 2) of length L carrying N ! 1 particles at separation a. We suppose
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<n> =  ∑ nPn
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(7)

Normal Mode Enumeration

The energy of a collection of oscillators of frequencies !K,p in thermal
equilibrium is found from (1) and (2):

(8)

It is usually convenient to replace the summation over K by an integral. Sup-
pose that the crystal has modes of a given polarization p in the fre-
quency range to . Then the energy is

(9)

The lattice heat capacity is found by differentiation with respect to tempera-
ture. Let : then gives

(10)

The central problem is to find , the number of modes per unit fre-
quency range. This function is called the density of modes or, more often, den-
sity of states.

Density of States in One Dimension

Consider the boundary value problem for vibrations of a one-dimensional
line (Fig. 2) of length L carrying N ! 1 particles at separation a. We suppose
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An oscillator in thermal equilibrium at temperature T, we can prove, using the
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The lattice heat capacity is found by differentiation with respect to
temperature. Let x = ℏω/𝜏 = ℏω/kBT: then ∂U/∂T gives
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𝜏 = kBT,

107107

chapter 5: phonons ii. thermal properties

We discuss the heat capacity of a phonon gas and then the effects of 
anharmonic lattice interactions on the phonons and on the crystal.

PHONON HEAT CAPACITY

By heat capacity we shall usually mean the heat capacity at constant vol-
ume, which is more fundamental than the heat capacity at constant pressure,
which is what the experiments determine.1 The heat capacity at constant vol-
ume is defined as where U is the energy and T the temperature.

The contribution of the phonons to the heat capacity of a crystal is called 
the lattice heat capacity and is denoted by Clat. The total energy of the
phonons at a temperature in a crystal may be written as the sum of
the energies over all phonon modes, here indexed by the wavevector K and 
polarization index p:

(1)

where is the thermal equilibrium occupancy of phonons of wavevector 
K and polarization p. The form of is given by the Planck distribution 
function:

(2)

where the denotes the average in thermal equilibrium. A graph of is
given in Fig. 1.

Planck Distribution

Consider a set of identical harmonic oscillators in thermal equilibrium.
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1A thermodynamic relation gives , where is the temperature coefficient 
of linear expansion, V the volume, and B the bulk modulus. The fractional difference between 
and is usually small in solids and often may be neglected. As we see that , pro-
vided and B are constant.#
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Density of Modes of a Linear Chain

We assume that the particles s = 0 and s = N at the ends of the line with
length L are held fixed. Each normal vibration mode of polarization p has
the form of a standing wave, where us is the displacement of particle s:

s =	0 s =	N

L	=	Na

a us

The wavevector K is restricted by the fixed-end boundary conditions to

the values:

where ωK,p is related to K by the appropriate dispersion relation.

that the particles and at the ends of the line are held fixed. Each
normal vibrational mode of polarization p has the form of a standing wave,
where is the displacement of the particle s:

(11)

where is related to K by the appropriate dispersion relation.
As in Fig. 3, the wavevector K is restricted by the fixed-end boundary con-

ditions to the values

(12)

The solution for has

(13)

and vanishes for and as required.
The solution for has ; this permits no 

motion of any atom, because vanishes at each atom. Thus there are
N ! 1 allowed independent values of K in (12). This number is equal to the
number of particles allowed to move. Each allowed value of K is associated
with a standing wave. For the one-dimensional line there is one mode for each
interval , so that the number of modes per unit range of K is for

, and 0 for .
There are three polarizations p for each value of K: in one dimension two

of these are transverse and one longitudinal. In three dimensions the polariza-
tions are this simple only for wavevectors in certain special crystal directions.

Another device for enumerating modes is equally valid. We consider the
medium as unbounded, but require that the solutions be periodic over a large
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5  Phonons II. Thermal Properties 109

L
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s = 0 s = 101 2
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....

us°

Figure 2  Elastic line of N % 1 atoms, with N # 10, for boundary conditions that the end atoms 
s # 0 and s # 10 are fixed. The particle displacements in the normal modes for either longitudinal 
or transverse displacements are of the form us # sin sKa. This form is automatically zero at the 
atom at the end s # 0, and we choose K to make the displacement zero at the end s # 10 .

0

K

....
10a

!
10a
2!

10a
10!

Figure 3  The boundary condition sin sKa # 0 for s # 10 can be satisfied by choosing K # !/10a,
2!$10a, . . ., 9!$10a, where 10a is the length L of the line. The present figure is in K space. The
dots are not atoms but are the allowed values of K. Of the N % 1 particles on the line, only N $ 1
are allowed to move, and their most general motion can be expressed in terms of the N $ 1 al-
lowed values of K. This quantization of K has nothing to do with quantum mechanics but follows
classically from the boundary conditions that the end atoms be fixed.
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The solution for K = N𝜋/L = 𝜋/a = Kmax has us ∝ sin s𝜋; this permits no
motion of any atom, because sin s𝜋 vanishes at each atom.
The number of modes per unit range of K is L/𝜋 for K ≤ 𝜋/a, and 0 for
K > 𝜋/a.
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and vanishes for and as required.
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motion of any atom, because vanishes at each atom. Thus there are
N ! 1 allowed independent values of K in (12). This number is equal to the
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with a standing wave. For the one-dimensional line there is one mode for each
interval , so that the number of modes per unit range of K is for

, and 0 for .
There are three polarizations p for each value of K: in one dimension two

of these are transverse and one longitudinal. In three dimensions the polariza-
tions are this simple only for wavevectors in certain special crystal directions.

Another device for enumerating modes is equally valid. We consider the
medium as unbounded, but require that the solutions be periodic over a large
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With the periodic boundary condi,ons,                                     and

We have now both plus and minus values of K, 
with the interval  ∆K = 2𝜋/L.

We need to know D(ω), the number of modes per unit frequency range
for a given polarization. The number of modes D(ω) dω in dω at ω is given
in one dimension by

We can obtain the group velocity dω/dK from the dispersion relation ω
versus K.

, the allowed values of K are 

distance L, so that u(sa) ! u(sa " L). The method of periodic boundary
conditions (Figs. 4 and 5) does not change the physics of the problem in any
essential respect for a large system. In the running wave solution

the allowed values of K are

(14)

This method of enumeration gives the same number of modes (one per 
mobile atom) as given by (12), but we have now both plus and minus values of 
K, with the interval between successive values of K. For periodic
boundary conditions, the number of modes per unit range of K is for

, and 0 otherwise. The situation in a two-dimensional lattice is
portrayed in Fig. 6.

We need to know , the number of modes per unit frequency range for 
a given polarization. The number of modes in d at is given in one 
dimension by
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Figure 4  Consider N particles constrained to slide on
a circular ring. The particles can oscillate if connected
by elastic springs. In a normal mode the displacement

of atom s will be of the form sin sKa or cos sKa:
these are independent modes. By the geometrical pe-
riodicity of the ring the boundary condition is that

for all s, so that NKa must be an integral
multiple of . For N ! 8 the allowed independent
values of K are 0, , , , and . The
value K ! 0 is meaningless for the sine form, because
sin s0a ! 0. The value has a meaning only for
the cosine form, because sin .
The three other values of K are allowed for both the
sine and cosine modes, giving a total of eight allowed
modes for the eight particles. Thus the periodic
boundary condition leads to one allowed mode per
particle, exactly as for the fixed-end boundary condi-
tion of Fig. 3. If we had taken the modes in the com-
plex form exp(isKa), the periodic boundary condition
would lead to the eight modes with K ! 0, !2"/Na,
!4"/Na, !6"/Na, and , as in Eq. (14).8"/Na

(s8"a/8a) ! sin s" ! 0
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6"# 0

Figure 5  Allowed values of wavevector K for periodic boundary conditions applied to a linear lat-
tice of periodicity N ! 8 atoms on a line of length L. The K ! 0 solution is the uniform mode. The
special points !N"/L represent only a single solution because exp(i"s) is identical to exp("i"s);
thus there are eight allowed modes, with displacements of the sth atom proportional to 1,
exp(!i"s/4), exp(!i"s/2), exp(!i3"s/4), exp(i"s).
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The number of modes per unit range of K is L/2𝜋
for −𝜋/a ≤ K ≤ 𝜋/a, and 0 otherwise.

distance L, so that u(sa) ! u(sa " L). The method of periodic boundary
conditions (Figs. 4 and 5) does not change the physics of the problem in any
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thus there are eight allowed modes, with displacements of the sth atom proportional to 1,
exp(!i"s/4), exp(!i"s/2), exp(!i3"s/4), exp(i"s).
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K, with the interval between successive values of K. For periodic
boundary conditions, the number of modes per unit range of K is for

, and 0 otherwise. The situation in a two-dimensional lattice is
portrayed in Fig. 6.

We need to know , the number of modes per unit frequency range for 
a given polarization. The number of modes in d at is given in one 
dimension by
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Figure 4  Consider N particles constrained to slide on
a circular ring. The particles can oscillate if connected
by elastic springs. In a normal mode the displacement

of atom s will be of the form sin sKa or cos sKa:
these are independent modes. By the geometrical pe-
riodicity of the ring the boundary condition is that

for all s, so that NKa must be an integral
multiple of . For N ! 8 the allowed independent
values of K are 0, , , , and . The
value K ! 0 is meaningless for the sine form, because
sin s0a ! 0. The value has a meaning only for
the cosine form, because sin .
The three other values of K are allowed for both the
sine and cosine modes, giving a total of eight allowed
modes for the eight particles. Thus the periodic
boundary condition leads to one allowed mode per
particle, exactly as for the fixed-end boundary condi-
tion of Fig. 3. If we had taken the modes in the com-
plex form exp(isKa), the periodic boundary condition
would lead to the eight modes with K ! 0, !2"/Na,
!4"/Na, !6"/Na, and , as in Eq. (14).8"/Na
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Figure 5  Allowed values of wavevector K for periodic boundary conditions applied to a linear lat-
tice of periodicity N ! 8 atoms on a line of length L. The K ! 0 solution is the uniform mode. The
special points !N"/L represent only a single solution because exp(i"s) is identical to exp("i"s);
thus there are eight allowed modes, with displacements of the sth atom proportional to 1,
exp(!i"s/4), exp(!i"s/2), exp(!i3"s/4), exp(i"s).
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Density of Modes in 3D

whence

We apply periodic boundary condi,ons over N3 primi,ve cells within a
cube of side L, so that K is determined by the condi,on

Therefore, there is one allowed value of K per volume (2𝜋/L)3 in K space, or 

allowed values of K per unit volume of K space, for
each polarization and for each branch.

The total number of modes with wavevector less than K is 

The density of states for each polarization is for each polarization type. The density of states for each polarization is

(20)

Debye Model for Density of States

In the Debye approximation the velocity of sound is taken as constant for
each polarization type, as it would be for a classical elastic continuum. The dis-
persion relation is written as

(21)

with v the constant velocity of sound.
The density of states (20) becomes

(22)

If there are N primitive cells in the specimen, the total number of acoustic
phonon modes is N. A cutoff frequency is determined by (19) as
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To this frequency there corresponds a cutoff wavevector in K space:
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On the Debye model we do not allow modes of wavevector larger than . The
number of modes with exhausts the number of degrees of freedom of a
monatomic lattice.

The thermal energy (9) is given by
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for each polarization type. For brevity we assume that the phonon velocity is 
independent of the polarization, so that we multiply by the factor 3 to obtain
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We can obtain the group velocity from the dispersion relation versus
K. There is a singularity in D1(!)whenever the dispersion relation is hori-
zontal; that is, whenever the group velocity is zero.

Density of States in Three Dimensions

We apply periodic boundary conditions over primitive cells within a
cube of side L, so that K is determined by the condition

(16)

whence

(17)

Therefore, there is one allowed value of K per volume in K space, or

(18)

allowed values of K per unit volume of K space, for each polarization and for
each branch. The volume of the specimen is .

The total number of modes with wavevector less than K is found from (18)
to be times the volume of a sphere of radius K. Thus
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Figure 6  Allowed values in Fourier space of the phonon wavevector K for a square lattice of lat-
tice constant a, with periodic boundary conditions applied over a square of side L ! 10a. The uni-
form mode is marked with a cross. There is one allowed value of K per area , so
that within the circle of area the smoothed number of allowed points is ."K 
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Debye Model of Density of Modes

The density of modes becomes

In the Debye approximation the velocity of sound is taken as constant for
each polarization type, as it would be for a classical elastic continuum. The
dispersion relation is written as

with v the constant velocity of sound. 

for each polarization type. The density of states for each polarization is

(20)

Debye Model for Density of States

In the Debye approximation the velocity of sound is taken as constant for
each polarization type, as it would be for a classical elastic continuum. The dis-
persion relation is written as

(21)

with v the constant velocity of sound.
The density of states (20) becomes

(22)

If there are N primitive cells in the specimen, the total number of acoustic
phonon modes is N. A cutoff frequency is determined by (19) as

(23)

To this frequency there corresponds a cutoff wavevector in K space:

(24)

On the Debye model we do not allow modes of wavevector larger than . The
number of modes with exhausts the number of degrees of freedom of a
monatomic lattice.

The thermal energy (9) is given by

(25)

for each polarization type. For brevity we assume that the phonon velocity is 
independent of the polarization, so that we multiply by the factor 3 to obtain

(26)

where and

(27)

This defines the Debye temperature in terms of defined by (23).
We may express as
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To this frequency there corresponds a cutoff wavevector in K space:

On the Debye model we do not allow modes of wavevector larger than
KD. The number of modes with K ≤ KD exhausts the number of degrees of
freedom of a monatomic lattice.



The thermal energy U for each polarization type is then

Here we define Debye temperature 𝜃 as:

Assume the phonon velocity is independent of the polarization, we
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for each polarization type. The density of states for each polarization is
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Debye Model for Density of States

In the Debye approximation the velocity of sound is taken as constant for
each polarization type, as it would be for a classical elastic continuum. The dis-
persion relation is written as
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with v the constant velocity of sound.
The density of states (20) becomes
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If there are N primitive cells in the specimen, the total number of acoustic
phonon modes is N. A cutoff frequency is determined by (19) as
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To this frequency there corresponds a cutoff wavevector in K space:
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monatomic lattice.
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so that the total phonon energy is

(29)

where N is the number of atoms in the specimen and .
The heat capacity is found most easily by differentiating the middle ex-

pression of (26) with respect to temperature. Then

(30)

The Debye heat capacity is plotted in Fig. 7. At the heat capacity ap-
proaches the classical value of 3NkB. Measured values for silicon and germa-
nium are plotted in Fig. 8.
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Figure 7  Heat capacity CV of a solid, according to
the Debye approximation. The vertical scale is in J
mol#1 K#1. The horizontal scale is the temperature
normalized to the Debye temperature !. The re-
gion of the T3 law is below 0.1!. The asymptotic
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Figure 8  Heat capacity of silicon and germa-
nium. Note the decrease at low temperatures.
To convert a value in cal/mol-K to J/mol-K,
multiply by 4.186.
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where N is the number of atoms in the specimen and xD = 𝜃/T.



Debye T3Law

At very low temperatures we may approximate (29) by letting the upper
limit go to infinity. We have

(31)

where the sum over s!4 is found in standard tables. Thus for
, and

(32)

which is the Debye T3 approximation. Experimental results for argon are plot-
ted in Fig. 9.

At sufficiently low temperature the T3 approximation is quite good; that is,
when only long wavelength acoustic modes are thermally excited. These are just
the modes that may be treated as an elastic continuum with macroscopic elastic
constants. The energy of the short wavelength modes (for which this approxima-
tion fails) is too high for them to be populated significantly at low temperatures.

We understand the T3 result by a simple argument (Fig. 10). Only those 
lattice modes having will be excited to any appreciable extent at a
low temperature T. The excitation of these modes will be approximately classi-
cal, each with an energy close to kBT, according to Fig. 1.

Of the allowed volume in K space, the fraction occupied by the excited
modes is of the order of or (KT /KD)3, where KT is a “thermal” wavevec-
tor defined such that and KD is the Debye cutoff wavevector. Thus
the fraction occupied is (T/!)3 of the total volume in K space. There are of the
order of 3N(T/!)3excited modes, each having energy kBT. The energy is

, and the heat capacity is .
For actual crystals the temperatures at which the T3 approximation holds 

are quite low. It may be necessary to be below to get reasonably pure
T3 behavior.

Selected values of are given in Table 1. Note, for example, in the alkali 
metals that the heavier atoms have the lowest ’s, because the velocity of
sound decreases as the density increases.

Einstein Model of the Density of States

Consider N oscillators of the same frequency and in one dimension.
The Einstein density of states is , where the delta function
is centered at . The thermal energy of the system is

(33)
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The heat capacity of the oscillators is

(34)

as plotted in Fig. 11. This expresses the Einstein (1907) result for the contribu-
tion of N identical oscillators to the heat capacity of a solid. In three dimensions
N is replaced by 3N, there being three modes per oscillator. The high tempera-
ture limit of becomes , which is known as the Dulong and Petit value.

At low temperatures (34) decreases as , whereas the experi-
mental form of the phonon contribution is known to be T3as accounted for by
the Debye model treated above. The Einstein model, however, is often used to
approximate the optical phonon part of the phonon spectrum.

General Result for D(!)

We want to find a general expression for , the number of states per unit
frequency range, given the phonon dispersion relation . The number of al-
lowed values of K for which the phonon frequency is between ! and is

(35)

where the integral is extended over the volume of the shell in K space bounded
by the two surfaces on which the phonon frequency is constant, one surface on
which the frequency is ! and the other on which the frequency is .

The real problem is to evaluate the volume of this shell. We let denote
an element of area (Fig. 12) on the surface in K space of the selected constant 
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Figure 11  Comparison of experimental values of the heat capacity of diamond with values calcu-
lated on the earliest quantum (Einstein) model, using the characteristic temperature

K. To convert to J/mol-deg, multiply by 4.186.$E " !!/kB " 1320
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Heat Capacity with Debye Model
At very low temperature, i.e. T << 𝜃, we can replace the upper limit of the
integral for the total thermal energy U to infinity. Since

The heat capacity Cv

At very high temperature, i.e. T >> 𝜃, 

Cv ~ 3NkB,  this is the classical limit. 

Debye T3Law

At very low temperatures we may approximate (29) by letting the upper
limit go to infinity. We have

(31)

where the sum over s!4 is found in standard tables. Thus for
, and

(32)

which is the Debye T3 approximation. Experimental results for argon are plot-
ted in Fig. 9.

At sufficiently low temperature the T3 approximation is quite good; that is,
when only long wavelength acoustic modes are thermally excited. These are just
the modes that may be treated as an elastic continuum with macroscopic elastic
constants. The energy of the short wavelength modes (for which this approxima-
tion fails) is too high for them to be populated significantly at low temperatures.

We understand the T3 result by a simple argument (Fig. 10). Only those 
lattice modes having will be excited to any appreciable extent at a
low temperature T. The excitation of these modes will be approximately classi-
cal, each with an energy close to kBT, according to Fig. 1.

Of the allowed volume in K space, the fraction occupied by the excited
modes is of the order of or (KT /KD)3, where KT is a “thermal” wavevec-
tor defined such that and KD is the Debye cutoff wavevector. Thus
the fraction occupied is (T/!)3 of the total volume in K space. There are of the
order of 3N(T/!)3excited modes, each having energy kBT. The energy is

, and the heat capacity is .
For actual crystals the temperatures at which the T3 approximation holds 

are quite low. It may be necessary to be below to get reasonably pure
T3 behavior.

Selected values of are given in Table 1. Note, for example, in the alkali 
metals that the heavier atoms have the lowest ’s, because the velocity of
sound decreases as the density increases.

Einstein Model of the Density of States

Consider N oscillators of the same frequency and in one dimension.
The Einstein density of states is , where the delta function
is centered at . The thermal energy of the system is

(33)
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which is the Debye T3 approximation. 
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solid argon 

we have then 

Debye T3Law

At very low temperatures we may approximate (29) by letting the upper
limit go to infinity. We have

(31)

where the sum over s!4 is found in standard tables. Thus for
, and

(32)

which is the Debye T3 approximation. Experimental results for argon are plot-
ted in Fig. 9.

At sufficiently low temperature the T3 approximation is quite good; that is,
when only long wavelength acoustic modes are thermally excited. These are just
the modes that may be treated as an elastic continuum with macroscopic elastic
constants. The energy of the short wavelength modes (for which this approxima-
tion fails) is too high for them to be populated significantly at low temperatures.

We understand the T3 result by a simple argument (Fig. 10). Only those 
lattice modes having will be excited to any appreciable extent at a
low temperature T. The excitation of these modes will be approximately classi-
cal, each with an energy close to kBT, according to Fig. 1.

Of the allowed volume in K space, the fraction occupied by the excited
modes is of the order of or (KT /KD)3, where KT is a “thermal” wavevec-
tor defined such that and KD is the Debye cutoff wavevector. Thus
the fraction occupied is (T/!)3 of the total volume in K space. There are of the
order of 3N(T/!)3excited modes, each having energy kBT. The energy is

, and the heat capacity is .
For actual crystals the temperatures at which the T3 approximation holds 

are quite low. It may be necessary to be below to get reasonably pure
T3 behavior.

Selected values of are given in Table 1. Note, for example, in the alkali 
metals that the heavier atoms have the lowest ’s, because the velocity of
sound decreases as the density increases.

Einstein Model of the Density of States

Consider N oscillators of the same frequency and in one dimension.
The Einstein density of states is , where the delta function
is centered at . The thermal energy of the system is
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Einstein Model of Density of Modes

Experimental data of the heat
capacity of Diamond compared
with the values derived from
the Einstein model

The Einstein density of states is D(ω’) = N𝛿(ω’ − ω), where the delta
function is centered at ω, considering N oscillators of the same frequency ω in
one dimension. The thermal energy of the system is

Debye T3Law

At very low temperatures we may approximate (29) by letting the upper
limit go to infinity. We have

(31)

where the sum over s!4 is found in standard tables. Thus for
, and

(32)

which is the Debye T3 approximation. Experimental results for argon are plot-
ted in Fig. 9.

At sufficiently low temperature the T3 approximation is quite good; that is,
when only long wavelength acoustic modes are thermally excited. These are just
the modes that may be treated as an elastic continuum with macroscopic elastic
constants. The energy of the short wavelength modes (for which this approxima-
tion fails) is too high for them to be populated significantly at low temperatures.

We understand the T3 result by a simple argument (Fig. 10). Only those 
lattice modes having will be excited to any appreciable extent at a
low temperature T. The excitation of these modes will be approximately classi-
cal, each with an energy close to kBT, according to Fig. 1.

Of the allowed volume in K space, the fraction occupied by the excited
modes is of the order of or (KT /KD)3, where KT is a “thermal” wavevec-
tor defined such that and KD is the Debye cutoff wavevector. Thus
the fraction occupied is (T/!)3 of the total volume in K space. There are of the
order of 3N(T/!)3excited modes, each having energy kBT. The energy is

, and the heat capacity is .
For actual crystals the temperatures at which the T3 approximation holds 

are quite low. It may be necessary to be below to get reasonably pure
T3 behavior.

Selected values of are given in Table 1. Note, for example, in the alkali 
metals that the heavier atoms have the lowest ’s, because the velocity of
sound decreases as the density increases.

Einstein Model of the Density of States

Consider N oscillators of the same frequency and in one dimension.
The Einstein density of states is , where the delta function
is centered at . The thermal energy of the system is
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The heat capacity of the oscillators is 
The heat capacity of the oscillators is

(34)

as plotted in Fig. 11. This expresses the Einstein (1907) result for the contribu-
tion of N identical oscillators to the heat capacity of a solid. In three dimensions
N is replaced by 3N, there being three modes per oscillator. The high tempera-
ture limit of becomes , which is known as the Dulong and Petit value.

At low temperatures (34) decreases as , whereas the experi-
mental form of the phonon contribution is known to be T3as accounted for by
the Debye model treated above. The Einstein model, however, is often used to
approximate the optical phonon part of the phonon spectrum.

General Result for D(!)

We want to find a general expression for , the number of states per unit
frequency range, given the phonon dispersion relation . The number of al-
lowed values of K for which the phonon frequency is between ! and is

(35)

where the integral is extended over the volume of the shell in K space bounded
by the two surfaces on which the phonon frequency is constant, one surface on
which the frequency is ! and the other on which the frequency is .

The real problem is to evaluate the volume of this shell. We let denote
an element of area (Fig. 12) on the surface in K space of the selected constant 
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Figure 11  Comparison of experimental values of the heat capacity of diamond with values calcu-
lated on the earliest quantum (Einstein) model, using the characteristic temperature

K. To convert to J/mol-deg, multiply by 4.186.$E " !!/kB " 1320
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General Form of Density of Modes
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where the integral is extended over the volume of the shell in K space
bounded by the two surfaces on which the phonon frequency is constant,
one surface on which the frequency is ω and the other on which the
frequency is ω + dω.

The heat capacity of the oscillators is

(34)

as plotted in Fig. 11. This expresses the Einstein (1907) result for the contribu-
tion of N identical oscillators to the heat capacity of a solid. In three dimensions
N is replaced by 3N, there being three modes per oscillator. The high tempera-
ture limit of becomes , which is known as the Dulong and Petit value.

At low temperatures (34) decreases as , whereas the experi-
mental form of the phonon contribution is known to be T3as accounted for by
the Debye model treated above. The Einstein model, however, is often used to
approximate the optical phonon part of the phonon spectrum.

General Result for D(!)

We want to find a general expression for , the number of states per unit
frequency range, given the phonon dispersion relation . The number of al-
lowed values of K for which the phonon frequency is between ! and is

(35)

where the integral is extended over the volume of the shell in K space bounded
by the two surfaces on which the phonon frequency is constant, one surface on
which the frequency is ! and the other on which the frequency is .

The real problem is to evaluate the volume of this shell. We let denote
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and

frequency !. The element of volume between the constant frequency surfaces
! and is a right cylinder of base and altitude , so that

(36)

Here is the perpendicular distance (Fig. 13) between the surface ! con-
stant and the surface constant. The value of will vary from one
point to another on the surface.

The gradient of !, which is , is also normal to the surface ! constant,
and the quantity

is the difference in frequency between the two surfaces connected by .
Thus the element of the volume is

where is the magnitude of the group velocity of a phonon. For (35) 
we have

We divide both sides by and write for the volume of the crystal: the
result for the density of states is
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where                          is the 
magnitude of the group 
velocity of a phonon. 
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The integral is taken over the area of the surface ! constant, in K space. The
result refers to a single branch of the dispersion relation. We can use this re-
sult also in electron band theory.

There is a special interest in the contribution to from points at which
the group velocity is zero. Such critical points produce singularities (known as
Van Hove singularities) in the distribution function (Fig. 14).

ANHARMONIC CRYSTAL INTERACTIONS

The theory of lattice vibrations discussed thus far has been limited in the
potential energy to terms quadratic in the interatomic displacements. This is
the harmonic theory; among its consequences are:

• Two lattice waves do not interact; a single wave does not decay or change
form with time.

• There is no thermal expansion.
• Adiabatic and isothermal elastic constants are equal.
• The elastic constants are independent of pressure and temperature.
• The heat capacity becomes constant at high temperatures .T ! "

D(!)
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Figure 13  The quantity is the perpendicular distance 
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Figure 14  Density of states as a function of frequency for (a) the Debye solid and (b) an actual
crystal structure. The spectrum for the crystal starts as !2 for small !, but discontinuities develop
at singular points.
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Any real crystal resists compression to a
smaller volume than its equilibrium value
more strongly than expansion to a larger
volume. This is due to the asymmetric
shape of the interatomic potential curve.
This is an anharmonic effect due to the
higher order terms in potential which are
ignored in harmonic approximation of U(r)
~ Cr2.

Thermal expansion is an example to the
anharmonic effect. In anharmonic effect
phonons collide with each other and these
collisions limit thermal conductivity which
is due to the flow of phonons.

Anharmonic Effects
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We choose a representa,on of interatomic poten,al beyond the simple
harmonic approxima,on for a two-atom system separated by x as

Thermal Expansion

where c, g, f all positive

Solid Argon

In real crystals none of these consequences is satisfied accurately. The devia-
tions may be attributed to the neglect of anharmonic (higher than quadratic)
terms in the interatomic displacements. We discuss some of the simpler as-
pects of anharmonic effects.

Beautiful demonstrations of anharmonic effects are the experiments on
the interaction of two phonons to produce a third phonon at a frequency

. Three-phonon processes are caused by third-order terms in the
lattice potential energy. The physics of the phonon interaction can be stated
simply: the presence of one phonon causes a periodic elastic strain which
(through the anharmonic interaction) modulates in space and time the elastic
constant of the crystal. A second phonon perceives the modulation of the elas-
tic constant and thereupon is scattered to produce a third phonon, just as from
a moving three-dimensional grating.

Thermal Expansion

We may understand thermal expansion by considering for a classical oscil-
lator the effect of anharmonic terms in the potential energy on the mean sepa-
ration of a pair of atoms at a temperature T. We take the potential energy of the
atoms at a displacement x from their equilibrium separation at absolute zero as

(38)

with c, g, and f all positive. The term in represents the asymmetry of the 
mutual repulsion of the atoms and the term in represents the softening of the
vibration at large amplitudes. The minimum at is not an absolute mini-
mum, but for small oscillations the form is an adequate representation of an in-
teratomic potential.

We calculate the average displacement by using the Boltzmann distribu-
tion function, which weights the possible values of x according to their
thermodynamic probability:

with . For displacements such that the anharmonic terms in the 
energy are small in comparison with , we may expand the integrands as

(39)

whence the thermal expansion is
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Thermal expansion is 
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We calculate the average displacement by using the Boltzmann distribution
function with

In real crystals none of these consequences is satisfied accurately. The devia-
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In real crystals none of these consequences is satisfied accurately. The devia-
tions may be attributed to the neglect of anharmonic (higher than quadratic)
terms in the interatomic displacements. We discuss some of the simpler as-
pects of anharmonic effects.

Beautiful demonstrations of anharmonic effects are the experiments on
the interaction of two phonons to produce a third phonon at a frequency

. Three-phonon processes are caused by third-order terms in the
lattice potential energy. The physics of the phonon interaction can be stated
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(through the anharmonic interaction) modulates in space and time the elastic
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mutual repulsion of the atoms and the term in represents the softening of the
vibration at large amplitudes. The minimum at is not an absolute mini-
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In real crystals none of these consequences is satisfied accurately. The devia-
tions may be attributed to the neglect of anharmonic (higher than quadratic)
terms in the interatomic displacements. We discuss some of the simpler as-
pects of anharmonic effects.

Beautiful demonstrations of anharmonic effects are the experiments on
the interaction of two phonons to produce a third phonon at a frequency

. Three-phonon processes are caused by third-order terms in the
lattice potential energy. The physics of the phonon interaction can be stated
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(through the anharmonic interaction) modulates in space and time the elastic
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tic constant and thereupon is scattered to produce a third phonon, just as from
a moving three-dimensional grating.
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mutual repulsion of the atoms and the term in represents the softening of the
vibration at large amplitudes. The minimum at is not an absolute mini-
mum, but for small oscillations the form is an adequate representation of an in-
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In real crystals none of these consequences is satisfied accurately. The devia-
tions may be attributed to the neglect of anharmonic (higher than quadratic)
terms in the interatomic displacements. We discuss some of the simpler as-
pects of anharmonic effects.

Beautiful demonstrations of anharmonic effects are the experiments on
the interaction of two phonons to produce a third phonon at a frequency

. Three-phonon processes are caused by third-order terms in the
lattice potential energy. The physics of the phonon interaction can be stated
simply: the presence of one phonon causes a periodic elastic strain which
(through the anharmonic interaction) modulates in space and time the elastic
constant of the crystal. A second phonon perceives the modulation of the elas-
tic constant and thereupon is scattered to produce a third phonon, just as from
a moving three-dimensional grating.

Thermal Expansion

We may understand thermal expansion by considering for a classical oscil-
lator the effect of anharmonic terms in the potential energy on the mean sepa-
ration of a pair of atoms at a temperature T. We take the potential energy of the
atoms at a displacement x from their equilibrium separation at absolute zero as

(38)

with c, g, and f all positive. The term in represents the asymmetry of the 
mutual repulsion of the atoms and the term in represents the softening of the
vibration at large amplitudes. The minimum at is not an absolute mini-
mum, but for small oscillations the form is an adequate representation of an in-
teratomic potential.

We calculate the average displacement by using the Boltzmann distribu-
tion function, which weights the possible values of x according to their
thermodynamic probability:

with . For displacements such that the anharmonic terms in the 
energy are small in comparison with , we may expand the integrands as

(39)

whence the thermal expansion is
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in the classical region. Note that in (39) we have left in the exponential, but
we have expanded 

Measurements of the lattice constant of solid argon are shown in Fig. 15.
The slope of the curve is proportional to the thermal expansion coefficient.
The expansion coefficient vanishes as , as we expect from Problem 5. In
lowest order the thermal expansion does not involve the symmetric term fx4 in
U(x), but only the antisymmetric term .

THERMAL CONDUCTIVITY

The thermal conductivity coefficient K of a solid is defined with respect to
the steady-state flow of heat down a long rod with a temperature gradient

:

(41)

where is the flux of thermal energy, or the energy transmitted across unit
area per unit time.

This form implies that the process of thermal energy transfer is a random
process. The energy does not simply enter one end of the specimen and pro-
ceed directly (ballistically) in a straight path to the other end, but diffuses
through the specimen, suffering frequent collisions. If the energy were propa-
gated directly through the specimen without deflection, then the expression
for the thermal flux would not depend on the temperature gradient, but only
on the difference in temperature between the ends of the specimen, re-
gardless of the length of the specimen. The random nature of the conductivity
process brings the temperature gradient and, as we shall see, a mean free path
into the expression for the thermal flux.
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Figure 15  Lattice constant of solid argon as a
function of temperature.
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Thermal Conductivity

This process is a random process, which means the thermal energy was
transferred through frequent collisions in the specimen. The random
nature of the conductivity process brings the temperature gradient and a
mean free path into the above expression.

The thermal conductivity coefficient for gases is

Debye was first applying it to describe the thermal conduc,vity in solids,
with C as the heat capacity of the phonons, 𝑣 the phonon velocity, and ℓ
the phonon mean free path.

The thermal conductivity coefficient K of a solid with the temperature
gradient along x is defined as

in the classical region. Note that in (39) we have left in the exponential, but
we have expanded 

Measurements of the lattice constant of solid argon are shown in Fig. 15.
The slope of the curve is proportional to the thermal expansion coefficient.
The expansion coefficient vanishes as , as we expect from Problem 5. In
lowest order the thermal expansion does not involve the symmetric term fx4 in
U(x), but only the antisymmetric term .

THERMAL CONDUCTIVITY

The thermal conductivity coefficient K of a solid is defined with respect to
the steady-state flow of heat down a long rod with a temperature gradient

:

(41)

where is the flux of thermal energy, or the energy transmitted across unit
area per unit time.

This form implies that the process of thermal energy transfer is a random
process. The energy does not simply enter one end of the specimen and pro-
ceed directly (ballistically) in a straight path to the other end, but diffuses
through the specimen, suffering frequent collisions. If the energy were propa-
gated directly through the specimen without deflection, then the expression
for the thermal flux would not depend on the temperature gradient, but only
on the difference in temperature between the ends of the specimen, re-
gardless of the length of the specimen. The random nature of the conductivity
process brings the temperature gradient and, as we shall see, a mean free path
into the expression for the thermal flux.
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where jU is the flux of thermal energy, or the energy transmitted across
unit area per unit time.

From the kinetic theory of gases we find below the following expression
for the thermal conductivity:

(42)

where C is the heat capacity per unit volume, v is the average particle velocity,
and is the mean free path of a particle between collisions. This result was ap-
plied first by Debye to describe thermal conductivity in dielectric solids, with C
as the heat capacity of the phonons, v the phonon velocity, and the phonon
mean free path. Several representative values of the mean free path are given
in Table 2.

We give the elementary kinetic theory which leads to (42). The flux of par-
ticles in the x direction is , where n is the concentration of molecules;
in equilibrium there is a flux of equal magnitude in the opposite direction. The

denote average value.
If c is the heat capacity of a particle, then in moving from a region at local

temperature to a region at local temperature T a particle will give up
energy . Now between the ends of a free path of the particle is given by

where ! is the average time between collisions.
The net flux of energy (from both senses of the particle flux) is therefore

(43)

If, as for phonons, v is constant, we may write (43) as

(44)
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Table 2  Phonon mean free paths

[Calculated from (44), taking cm/sec as a representative sound velocity.
The obtained in this way refer to umklapp processes.]

Crystal T, %C C, in J cm"3K"1 K, in W cm"1K"1 , in Å

Quartza 0 2.00 0.13 40
"190 0.55 0.50 540

NaCl 0 1.88 0.07 23
"190 1.00 0.27 100

a Parallel to optic axis.

!

!’s
v ! 5 & 105
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Phonon-Phonon Collisions
If the forces between atoms were purely harmonic, there would be no
mechanism for collisions between different phonons. Then, the
phonon mean free path ℓ is determined principally by collision with
the lattice imperfections and boundaries. However, such collisions do
not change the energy of indivisual phonons.

With anharmonic lattice interactions, there is a coupling between
different phonons, which limits the value of the mean free path, and ℓ
∝ 1/T. In addition, we also need to establish a local thermal
equilibrium distribution of phonons.

For a three-phonon collision process, it is remarkable that under
normal scattering condition, K1 + K2 = K3, the total momentum of the
phonon gas is not changed by such a collision. So the process will not
establish the thermal equilibrium.



Umklapp Processes
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Umklapp Processes

The important three-phonon processes that cause thermal resistivity are
not of the form K1 ! K2 " K3 in which K is conserved, but are of the form

(47)

where G is a reciprocal lattice vector (Fig. 17). These processes, discovered by
Peierls, are called umklapp processes. We recall that G may occur in all mo-
mentum conservation laws in crystals. In all allowed processes of the form of
(46) and (47), energy is conserved.

K1 ! K2 " K3 ! G ,

U processes
Hot
end

Cold
end

Figure 16d  In U processes there is a large net change in phonon momentum in each collision
event. An initial net phonon flux will rapidly decay as we move to the right. The ends may act as
sources and sinks. Net energy transport under a temperature gradient occurs as in (b).

K1

K2 K3

Ky

Kx

(a)

K1

K1 ! K2

K2

K3

Ky

Kx

G

(b)

Figure 17  (a) Normal and (b) umklapp phonon collision
processes in a two-dimensional square lattice. The square in each figure represents the first 
Brillouin zone in the phonon K space; this zone contains all the possible independent values of the
phonon wavevector. Vectors K with arrowheads at the center of the zone represent phonons 
absorbed in the collision process; those with arrowheads away from the center of the zone repre-
sent phonons emitted in the collision. We see in (b) that in the umklapp process the direction of
the x-component of the phonon flux has been reversed. The reciprocal lattice vector G as shown is
of length , where a is the lattice constant of the crystal lattice, and is parallel to the axis.
For all processes, N or U, energy must be conserved, so that !1 ! !2 " !3.

K x2"/a

K1 ! K2 " K3 ! GK1 ! K2 " K3
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K1 + K2 = K3 K1 + K2 = K3 + G

Umklapp Process or U processNormal Process or N process

1st BZ
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Mass flow of gas

Hot
gas
in

Hot
gas
out

Cold
end

Hot
end

Figure 16a  Flow of gas molecules in a state of drifting equilibrium down a long open tube with
frictionless walls. Elastic collision processes among the gas molecules do not change the momen-
tum or energy flux of the gas because in each collision the velocity of the center of mass of the col-
liding particles and their energy remain unchanged. Thus energy is transported from left to right
without being driven by a temperature gradient. Therefore the thermal resistivity is zero and the
thermal conductivity is infinite.

Figure 16b  The usual definition of thermal conductivity in a gas refers to a situation where no
mass flow is permitted. Here the tube is closed at both ends, preventing the escape or entrance of
molecules. With a temperature gradient the colliding pairs with above-average center of mass ve-
locities will tend to be directed to the right, those with below-average velocities will tend to be di-
rected to the left. A slight concentration gradient, high on the right, will be set up to enable the
net mass transport to be zero while allowing a net energy transport from the hot to the cold end.

Net flow of phonons

N processesPhonon
source

Phonon
sink

Figure 16c  In a crystal we may arrange to create phonons chiefly at one end, as by illuminating
the left end with a lamp. From that end there will be a net flux of phonons toward the right end of
the crystal. If only N processes (K1 ! K2 " K3) occur, the phonon flux is unchanged in momentum
on collision and some phonon flux will persist down the length of the crystal. On arrival of
phonons at the right end we can arrange in principle to convert most of their energy to radiation,
thereby creating a sink for the phonons. Just as in (a) the thermal resistivity is zero.

we start a distribution of hot phonons down a rod with , the distribution
will propagate down the rod with J unchanged. Therefore there is no thermal
resistance. The problem as illustrated in Fig. 16 is like that of the collisions be-
tween molecules of a gas in a straight tube with frictionless walls.

J ! 0
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Umklapp Processes

The important three-phonon processes that cause thermal resistivity are
not of the form K1 ! K2 " K3 in which K is conserved, but are of the form

(47)

where G is a reciprocal lattice vector (Fig. 17). These processes, discovered by
Peierls, are called umklapp processes. We recall that G may occur in all mo-
mentum conservation laws in crystals. In all allowed processes of the form of
(46) and (47), energy is conserved.

K1 ! K2 " K3 ! G ,

U processes
Hot
end

Cold
end

Figure 16d  In U processes there is a large net change in phonon momentum in each collision
event. An initial net phonon flux will rapidly decay as we move to the right. The ends may act as
sources and sinks. Net energy transport under a temperature gradient occurs as in (b).
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Figure 17  (a) Normal and (b) umklapp phonon collision
processes in a two-dimensional square lattice. The square in each figure represents the first 
Brillouin zone in the phonon K space; this zone contains all the possible independent values of the
phonon wavevector. Vectors K with arrowheads at the center of the zone represent phonons 
absorbed in the collision process; those with arrowheads away from the center of the zone repre-
sent phonons emitted in the collision. We see in (b) that in the umklapp process the direction of
the x-component of the phonon flux has been reversed. The reciprocal lattice vector G as shown is
of length , where a is the lattice constant of the crystal lattice, and is parallel to the axis.
For all processes, N or U, energy must be conserved, so that !1 ! !2 " !3.
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Raman Spectroscopy 

where ω0, k0 and ω, k characterize the incident and scattered light waves,
respectively.

Raman Spectroscopy is an important method using laser for investigating
elementary excitations in solids, for example, phonons and plasmons. As
for all scattering from time-varying structures, energy must be conserved
and, to within a reciprocal lattice vector G, wave vector too, i.e. we have

ℏω0 − ℏω ± ℏω(K) = 0   and  ℏk0 − ℏk ± ℏK + ℏG = 0

For light in the visible region of the spectrum, |k0| and |k| are of the
order of 1/1000 of a reciprocal lattice vector, which means that only
excitations in the center of the Brillouin zone (|K| ~ 0) can take part in
Raman scattering.
The interac,on of visible light with the solid occurs via the polarizability
of the valence electrons. The electric field ℰ0 of the incident light wave
induces, via the suscep,bility tensor 𝛘 a polariza,on P, i.e.

!"#$% &'% (%)%*+,-%#& +. &'% */0%12 3/-/# !,%$&1+0$+,4 5666789 '/0 :%$+-%
/# "-,+1&/#& -%&'+( .+1 "#)%0&";/&"#; %*%-%#&/14 %<$"&/&"+#0 "# 0+*"(02 .+1
%</-,*%2 ,'+#+#0 /#( ,*/0-+#07 6# &'"0 &4,% +. 0,%$&1+0$+,4 +#% 0&=("%0
&'% "#%*/0&"$ 0$/&&%1"#; +. *";'& :4 &'% %*%-%#&/14 %<$"&/&"+#0 +. "#&%1%0&7 >'"0
"#%*/0&"$ 0$/&&%1"#; ?/0 /*1%/(4 -%#&"+#%( "# !%$&7 @7A "# $+##%$&"+# ?"&'
0$/&&%1"#; .1+- ,'+#+#07 B0 .+1 /** 0$/&&%1"#; .1+- &"-%C)/14"#; 0&1=$&=1%0
D%7;7 )":1/&"+#0 +. /&+-0 "# / $140&/*E2 %#%1;4 -=0& :% $+#0%1)%( /#(2 &+ ?"&'"#
/ 1%$",1+$/* */&&"$% )%$&+1 !2 ?/)% )%$&+1 &++2 "7%7 ?% '/)%

!!!F ! !!!" !!!#"$ % F ! #666!8$

!!#F ! !!#" !!"& !!! % ! " #666!G$

?'%1% !F2#F /#( !2# $'/1/$&%1"H% &'% "#$"(%#& /#( 0$/&&%1%( *";'& ?/)%0 1%C
0,%$&")%*4I ! D"E /#( " /1% &'% /#;=*/1 .1%J=%#$4 /#( &'% ?/)% )%$&+1 +. &'%
%*%-%#&/14 %<$"&/&"+#2 %7;7 ,'+#+#7 K+1 *";'& "# &'% )"0":*% 1%;"+# +. &'%
0,%$&1=-2 L#FL /#( L#L /1% +. &'% +1(%1 +. 8M8FFF +. / 1%$",1+$/* */&&"$% )%$&+1
D!%$&7 @7AE2 ?'"$' -%/#0 &'/& +#*4 %<$"&/&"+#0 "# &'% $%#&%1 +. &'% N1"**+="#
H+#% DL"L!FE $/# &/O% ,/1& "# 3/-/# 0$/&&%1"#;7

>'% "#&%1/$&"+# +. )"0":*% *";'& ?"&' &'% 0+*"( +$$=10 )"/ &'% ,+*/1"H/:"*C
"&4 +. &'% )/*%#$% %*%$&1+#07 >'% %*%$&1"$ ."%*( F +. &'% "#$"(%#& *";'& ?/)%
"#(=$%02 )"/ &'% 0=0$%,&":"*"&4 &%#0+1 !

!

/ ,+*/1"H/&"+# $2 "7%7

$ % !F!
!

F +1 !" % !F
!

#

""# #F ! #666!P$

>'% ,%1"+("$ -+(=*/&"+# +. $ *%/(02 "# &=1#2 &+ &'% %-"00"+# +. / ?/)% Q &'%
0$/&&%1%( ?/)%7 6# / $*/00"$/* /,,1+<"-/&"+#2 &'% 0$/&&%1%( ?/)% $/# :% 1%C
;/1(%( /0 (",+*% 1/("/&"+# .1+- &'% +0$"**/&"#; (",+*% $7 K1+- &'% */?0 +.
%*%$&1+(4#/-"$0 +#% +:&/"#0 &'% %#%1;4 .*=< (%#0"&4 "# ("1%$&"+# %"2 "7%7 &'%
R+4#&"#; )%$&+1 &2 /& ("0&/#$% $ .1+- &'% (",+*% /0

&#%$ %
!@!G 0"#G #

8S!G"F$G&P
"% ! #666!@$

T%1% ! "0 &'% /#;*% :%&?%%# &'% ("1%$&"+# +. +:0%1)/&"+# %" /#( &'% ("1%$&"+#
+. &'% )":1/&"+# +. $7 >'% %*%$&1+#"$ 0=0$%,&":"*"&4 !

!

"# D6667PE "0 #+? / .=#$C
&"+# +. &'% #=$*%/1 $++1("#/&%0 /#( &'=0 +. &'% ("0,*/$%-%#&0 /00+$"/&%(
?"&' &'% )":1/&"+# 5# D"E2" 97 !"-"*/1*42 !

!

$/# /*0+ :% / .=#$&"+# +. 0+-%
+&'%1 $+**%$&")% %<$"&/&"+#0 ' 5# D"E2" 92 .+1 %</-,*%2 &'% (%#0"&4 )/1"/&"+#0

!!!!!!!!!!!!

!!!!!!!!!!!! !

"
#
$
%&

''
'R/#%* 666

(#)#$ *+%,-./0,/+1

!""#$%!&'( )%&* ! +#,-%&.(%,!+ '+'$&/#, 0+!"1! )!2' 34'$&5 665789 #/ &*'
&/!2'++%,-:)!2':+%;' 2!/%!&%#," #< 1!-,'&%=!&%#, %, !, #&*'/)%"' 0'/<'$&+>
#/('/'( <'//#1!-,'& 31!-,#,"85 ?*'"' @@(%"0+!$'1',&"AA ! B! 3!89! C $!, D'
/'-!/('( !" 0'/&./D!&%#," %, ! <#/1!+ 'E0!,"%#, %, !" F& ".G$'" &# /'&!%,
&*' <%/"& &)# &'/1"H

!

!

! !

!

I " #!!
!

"!!$! # #FFF#J$

K" )' #,+> ,''( &# $#,"%('/ 'E$%&!&%#," )%&* #!I9 )' $!, "%10+%<> 1!&&'/"
D> )/%&%,- !L!I $#" B! 3!8 $ C !,(9 %< &*' '+'$&/%$ <%'+( "I #< &*' %,$%(',&
)!2' %" ('"$/%D'( D> I! "

I $#" !I5$9 )' #D&!%, </#1 3FFF5M8 &*' 0#+!/%=!&%#,
!00'!/%,- %, 3FFF5N8 !"

" ! "I!
!

I "
I $#"!I$" "I

!!

!!
! !I "

I $#"%!#!$$& $#"!I$

! "I!
!

I "
I $#"!I$"

6

O
"I
!!

!!
!

I

!I "I'$#"%!I"!#!$&$"$#"%!I(!#!$&$) # #FFF#P$

?*' "$!&&'/'( /!(%!&%#, 'E0/'""'( D> 3FFF5N8 &*'/'<#/' $#,&!%,"9 !+#,- )%&* &*'
'+!"&%$ $#,&/%D.&%#, #< </'Q.',$> !I 3&*' R!>+'%-* "$!&&'/%,-89 <./&*'/
&'/1" ;,#), !" R!1!, "%(' D!,(" )%&* &*' </'Q.',$%'" !I #! 3!8 3S%-5 FFF5685
?*' 0+." !,( 1%,." "%-," $#//'"0#,( &# "$!&&'/'( +%-*& Q.!,&! &*!& *!2'9
/'"0'$&%2'+>9 !D"#/D'( &*' ','/-> #<9 !,( +#"& ','/-> &#9 &*' /'+'2!,& '+'1',&!/>
'E$%&!&%#, B! 3#89! C5 ?*' +%,'" )%&* </'Q.',$> "1!++'/ &*!, !I !/' $!++'( &*'
4&#;'" +%,'"T &*#"' )%&* *%-*'/ </'Q.',$> !/' &*' !,&%:4&#;'" +%,'"5 S#/ &*'
+!&&'/ +%,'" &# D' 0/'"',& %& %" ,'$'""!/> &*!& &*' '+'1',&!/> 'E$%&!&%#,9 '5-5 0*#:
,#,9 %" !+/'!(> 'E$%&'( %, &*' "#+%(5 ?*." !& +#) &'10'/!&./'" &*' %,&',"%&> #<
&*' !,&%:4&#;'" +%,'" %" 1.$* /'(.$'( D'$!."' &*' /'+'2!,& '+'1',&!/> 'E$%&!:
&%#, %" +!/-'+> %, %&" -/#.,( "&!&'5 ?*' %,&',"%&> #< &*' %,'+!"&%$!++> "$!&&'/'( /!:
(%!&%#, %" &>0%$!++> ! <!$&#/ #< 6IP )'!;'/ &*!, &*!& #< &*' 0/%1!/> /!(%!&%#,5

K 0/'/'Q.%"%&' <#/ &*' #D"'/2!&%#, #< ! R!1!, +%,' %" &*!& &*'
"."$'0&%D%+%&> !

!

3FFF5J8 *!" ! ,#,:2!,%"*%,- ('/%2!&%2' )%&* /'"0'$& &# &*' $##/:
(%,!&' ! #< &*' '+'1',&!/> 'E$%&!&%#,5 U, !$$#.,& #< &*' $/>"&!+ ">11'&/>
!,( &*' /'".+&%,- ">11'&/> 0/#0'/&%'" #< &*' '+'1',&!/> 'E$%&!&%#, &*!&
('&'/1%,' &*' 2!,%"*%,- #/ ,#,2!,%"*%,- #< &*' Q.!,&%&%'" #!$%&"!!$9 &*'
#D"'/2!D%+%&> #< &*' $#//'"0#,(%,- R!1!, +%,'" ('0',(" #, &*' -'#1'&/> #<
&*' 'E0'/%1',&5 ?*%" %" %++."&/!&'( <#/ &*' 'E!10+' #< &)# R!1!, "0'$&/!
1'!"./'( </#1 ! V%O4'M "%,-+' $/>"&!+ 3S%-5 FFF5O85 V%O4'M 0#""'""'" ! &/%-#,!+
':!E%" !+#,- )*%$* &*' $/>"&!+ %" D.%+& .0 #< +!>'/" #< V% !,( 4'5 ?*%" $/>"&!+
">11'&/> 1'!,"9 !1#,- #&*'/ &*%,-"9 &*!& &*' ,#/1!+ "."$'0&%D%+%&> &',"#/
*!" &*' <#++#)%,- <#/1 )*', /'<'//'( &# &*' 0/%,$%0!+ !E'"H

!

!

I !
$I(( I I
I $I(( I
I I $I))

!

"

#

$ # #FFF#W$

!!!!!!!!!!!!
!!!!!!!!!!!! !!!!!!!!!!!!

!!!!!!!!!!!! !!!!!!!!!!!!

!!!!!!!!!!!! !!!!!!!!!!!!

6IX Y!,'+ FFF R!1!, 40'$&/#"$#0>

!
"
#
$%

&&
&

and



The energy flux density in direction s, i.e. the Poynting vector S, at
distance r from the dipole as
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Problems

The kinetic energy of the incident neutron is p2/2Mn, where Mn is the mass
of the neutron. The momentum p is given by !k, where k is the wavevector of
the neutron. Thus !2k2/2Mn is the kinetic energy of the incident neutron. If k!
is the wavevector of the scattered neutron, the energy of the scattered neutron
is !2k!2/2Mn. The statement of conservation of energy is

(34)

where !! is the energy of the phonon created (") or absorbed (#) in the
process.

To determine the dispersion relation using (33) and (34) it is necessary in
the experiment to find the energy gain or loss of the scattered neutrons as a
function of the scattering direction k – k!. Results for germanium and KBr are
given in Fig. 8; results for sodium are given in Fig. 11. A spectrometer used for
phonon studies is shown in Fig. 12.

SUMMARY

• The quantum unit of a crystal vibration is a phonon. If the angular fre-
quency is !, the energy of the phonon is !!.

• When a phonon of wavevector K is created by the inelastic scattering of a
photon or neutron from wavevector k to k!, the wavevector selection rule that
governs the process is

where G is a reciprocal lattice vector.

• All elastic waves can be described by wavevectors that lie within the first
Brillouin zone in reciprocal space.

• If there are p atoms in the primitive cell, the phonon dispersion relation will
have 3 acoustical phonon branches and 3p # 3 optical phonon branches.

Problems

1. Monatomic linear lattice. Consider a longitudinal wave

which propagates in a monatomic linear lattice of atoms of mass M, spacing a, and
nearest-neighbor interaction C.
(a) Show that the total energy of the wave is

where s runs over all atoms.

E $ 

1
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1.

(b) By substitution of us in this expression, show that the time-average total energy
per atom is

where in the last step we have used the dispersion relation (9) for this problem.

2. Continuum wave equation. Show that for long wavelengths the equation of mo-
tion (2) reduces to the continuum elastic wave equation

where v is the velocity of sound.

3. Basis of two unlike atoms. For the problem treated by (18) to (26), find the am-
plitude ratios u/v for the two branches at Kmax ! !/a. Show that at this value of K
the two lattices act as if decoupled: one lattice remains at rest while the other lat-
tice moves.

4. Kohn anomaly. We suppose that the interplanar force constant Cp between planes
s and s " p is of the form

where A and k0 are constants and p runs over all integers. Such a form is expected in
metals. Use this and Eq. (16a) to find an expression for "2 and also for #"2/#K. Prove
that #"2/#K is infinite when K ! k0. Thus a plot of "2 versus K or of " versus K has a
vertical tangent at k0: there is a kink at k0 in the phonon dispersion relation "(K).

5. Diatomic chain. Consider the normal modes of a linear chain in which the force
constants between nearest-neighbor atoms are alternately C and 10C. Let the
masses be equal, and let the nearest-neighbor separation be a/2. Find "(K) at 
K ! 0 and K ! !/a. Sketch in the dispersion relation by eye. This problem simu-
lates a crystal of diatomic molecules such as H2.

6. Atomic vibrations in a metal. Consider point ions of mass M and charge e im-
mersed in a uniform sea of conduction electrons. The ions are imagined to be in
stable equilibrium when at regular lattice points. If one ion is displaced a small dis-
tance r from its equilibrium position, the restoring force is largely due to the elec-
tric charge within the sphere of radius r centered at the equilibrium position. Take
the number density of ions (or of conduction electrons) as 3/4!R3, which defines R.
(a) Show that the frequency of a single ion set into oscillation is " ! (e2/MR3)1/2.
(b) Estimate the value of this frequency for sodium, roughly. (c) From (a), (b), and
some common sense, estimate the order of magnitude of the velocity of sound in
the metal.

*7. Soft phonon modes. Consider a line of ions of equal mass but alternating in
charge, with ep ! e($1)p as the charge on the pth ion. The interatomic potential is

Cp ! A 

sin pk0
 

a
pa  ,

#2u
#t2  ! v2

 

#2u
#x2  ,

1
4 M"2u2

 " 

1
2 C(1 $ cos Ka)u2

 ! 

1
2 M"2u2 ,
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*This problem is rather difficult.
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2.

200 W cm!1 K!1 at 30 K. The maximum of the thermal conductivity in sapphire
is greater than the maximum of 100 W cm!1 K!1 in copper. Metallic gallium,
however, has a conductivity of 845 W cm!1 K!1 at 1.8 K. The electronic contri-
bution to the thermal conductivity of metals is treated in Chapter 6.

In an otherwise perfect crystal, the distribution of isotopes of the chemical
elements often provides an important mechanism for phonon scattering. The
random distribution of isotopic mass disturbs the periodicity of the density as
seen by an elastic wave. In some substances scattering of phonons by isotopes
is comparable in importance to scattering by other phonons. Results for ger-
manium are shown in Fig. 19. Enhanced thermal conductivity has been ob-
served also in isotopically pure silicon and diamond; the latter has device 
importance as a heat sink for laser sources.

Problems

1. Singularity in density of states. (a) From the dispersion relation derived in Chap-
ter 4 for a monatomic linear lattice of N atoms with nearest-neighbor interactions,
show that the density of modes is

where is the maximum frequency. (b) Suppose that an optical phonon branch 
has the form , near in three dimensions. Show that D(!) "

(L/2")3(2"/A3/2)(!0 ! !)1/2 for and D(!) " 0 for . Here the density 
of modes is discontinuous.

2. Rms thermal dilation of crystal cell. (a) Estimate for 300 K the root mean
square thermal dilation for a primitive cell of sodium. Take the bulk modulus
as 7 # 1010 erg cm!3. Note that the Debye temperature 158 K is less than 300 K, so
that the thermal energy is of the order of kBT. (b) Use this result to estimate the root
mean square thermal fluctuation of the lattice parameter.

3. Zero point lattice displacement and strain. (a) In the Debye approximation,
show that the mean square displacement of an atom at absolute zero is "

, where v is the velocity of sound. Start from the result (4.29) summed
over the independent lattice modes: . We have included a factor
of to go from mean square amplitude to mean square displacement. (b) Show that

and diverge for a one-dimensional lattice, but that the mean square strain
is finite. Consider as the mean square strain, and show that it is
equal to for a line of N atoms each of mass M, counting longitudinal
modes only. The divergence of R2 is not significant for any physical measurement.

4. Heat capacity of layer lattice. (a) Consider a dielectric crystal made up of layers
of atoms, with rigid coupling between layers so that the motion of the atoms 
is restricted to the plane of the layer. Show that the phonon heat capacity in 
the Debye approximation in the low temperature limit is proportional to T2. 

!!2
DL/4MNv3

!($R/$x)2" " 

1
2"K2u2

0

!R2""!!1

1
2

!R2" " (!/2#V)"!!1
3!!2
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%V/V

! # !0! $ !0

K " 0!(K) " !0!AK2
!m

D(!) " 2N
"  ! 1

(!2
m !!2)1/2 .
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(b) Suppose instead, as in many layer structures, that adjacent layers are very weakly
bound to each other. What form would you expect the phonon heat capacity to ap-
proach at extremely low temperatures?

*5. Grüneisen constant. (a) Show that the free energy of a phonon mode of fre-
quency is kBT ln . It is necessary to retain the zero-point energy

to obtain this result. (b) If is the fractional volume change, then the free en-
ergy of the crystal may be written as

where B is the bulk modulus. Assume that the volume dependence of !! is
, where " is known as the Grüneisen constant. If " is taken as indepen-

dent of the mode K, show that F is a minimum with respect to ! when 
coth , and show that this may be written in terms of the thermal energy
density as . (c) Show that on the Debye model ln ln V. Note:
Many approximations are involved in this theory: the result (a) is valid only if ! is in-
dependent of temperature; may be quite different for different modes."

#/"" # $"! # "U(T)/B
(!!/2kBT)

B! # ""1
2!!

$!/! # $"!

F(!, T) # 

1
2B!2

 % kBT ! ln [2 sinh (!!K/2kBT)] ,

!1
2!!

[2 sinh (!!/2kBT)]!
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*This problem is somewhat difficult.
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